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ABSTRACT
Asymmetricmulticore processors (AMPs) combine high-performance
big cores with more energy-efficient small cores, all exposing a
shared instruction-set architecture but different features, such as
clock frequency or microarchitecture. In the last decade, most com-
mercial AMP products have mainly targetted the embedded and
mobile domains. Today, major hardware players are releasing new
AMP-based products that aim to move beyond the mobile niche,
towards the desktop/server segments. The Apple M1 SoC or the
recent Intel Alder Lake processor family are clear examples of these
new AMP systems. Despite their energy-efficiency benefits, AMPs
pose significant challenges to the operating system scheduler.

In this paper, we assess the effectiveness of the Thread Direc-
tor (TD) technology, a set of hardware facillities –first introduced
in Alder Lake processors– that provide the OS with hints on the
performance and energy efficiency that a thread delivers when
running on the various core types. The main focus of our analysis
is to evaluate how effectively the OS can drive scheduling decisions
with TD’s performance hints. To this end, we incorporated support
in Linux to conveniently access TD facillites from the OS kernel.

Motivated by various TD’s limitations identified with our analy-
sis, we opted to build hardware-counter based prediction models
(generated via machine-learning methods) to better aid the OS in
making throughput-oriented and fairness-aware scheduling de-
cisions. The effectiveness of both TD and the hardware-counter
based models for performance prediction is evaluated both via of-
fline monitoring, and also online, by utilizing our implementation
of various asymmetry-aware schedulers in the Linux kernel.

CCS CONCEPTS
• Software and its engineering → Scheduling; • Computer
systems organization → Multicore architectures; Heteroge-
neous (hybrid) systems.
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1 INTRODUCTION
Asymmetric multicore processors (AMPs), which integrate high-
performance big cores and power-efficient small cores, are capable
to deliver higher performance per watt than symmetric multicores
for diverse workloads [12, 18, 24, 35]. The general-purpose nature
of the various cores, coupled with their shared ISA (instruction set
architecture) allows the execution of unmodified (legacy) programs,
making AMPs an attractive heterogeneous architecture [20, 21].

In the last decade, the main commercial niche of AMPs was in the
embedded and mobile domains. The clear role of big and small cores
in this context coupled with the surgent need for extended battery
life led to the widespread utilization of AMP processors, such as
the ARM big.LITTLE [3]. Specifically, in mobile workloads, big
cores are predominantly used for running foreground and latency-
sensitive tasks, while background tasks could be mapped to power-
efficient small cores. More recently, major hardware players are
releasing new products that bring AMP processors to the desktop
segment; this is the case of the Apple M1 SoC [2] or the Intel
Alder Lake processor family [1]. Despite the potential of AMPs,
transparently delivering their benefits to unmodified applications
poses big challenges to the system software, and in particular to the
OS scheduler, which has to effectively distribute big and small-core
cycles among the various threads in the workload [11, 28].

Previous research has demonstrated that to optimize key system
metrics, such as throughput, fairness or energy efficiency, the sched-
uler must factor in the performance benefit that each thread in the
workload derives when it runs on a big core, relative to a small
one [17, 32, 36]. Henceforth we will refer to this relative benefit as
the thread’s Speedup Factor (SF). Obtaining an accurate prediction
for threads’ SFs on-line is generally a challenging task [4, 25, 27],
and the fact that the SF may vary over time for a thread across dif-
ferent program phases requires the underlying prediction method
to be efficient enough for its practical utilization from the OS [11].

In this paper we evaluate the effectiveness of Thread Director
(TD), a set of hardware facillities introduced in Intel Alder Lake
processors to aid the OS in making thread scheduling decisions on
AMPs [15, 16]. Among other things, TD enables the OS to seam-
lessly obtain an estimate for the SF of any thread online. Windows
11 is the first operating system that leverages TD features from
the process scheduler. Unfortunately, the associated kernel-level

https://doi.org/10.1145/3546591.3547532
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(a) Stock Linux
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(b) Fair-sharing big cores
Figure 1: Distribution of per-application slowdown across 10 runs of the same
workload under (a) the default Linux scheduler, and (b) an asymmetry-aware
round-robin scheduler, which we implemented in Linux.

implementation remains proprietary, making our study in this OS
impractical. In this work, we conduct our analysis in the Linux
kernel. We should highlight that Linux default scheduler –the Com-
pletely Fair Scheduler (CFS)– does not currently leverage TD and is
still largely asymmetry unaware [11]. The latest scheduling-related
changes to improve performance on Alder Lake processors (intro-
duced in Linux v5.16) make the load balancer populate idle big cores
first, maximizing its utilization. However, despite these changes,
CFS still provides highly variable completion times of an applica-
tion across different runs of the same workload. To illustrate this
fact, we measured the completion time of 16 single-threaded SPEC
CPU applications, when running together on a 16-core Intel Alder
Lake processor. Fig. 1a plots the distribution of slowdowns (i.e.,
performance degradation vs. isolated big-core execution ) for each
application observed across 10 runs of the multi-program workload.
As it is evident, an application’s completion timemay increase by up
to 2.3x relative to the fastest run, leading to highly variable system
throughput and uneven degree of fairness across executions. This
high variability –also present in the latest stable version of Linux
(v5.17)– makes CFS misleading when considered as a baseline for
experimental analyses on AMPs [11]. The behavior of CFS stands
in contrast with the more consistent completion times provided by
an asymmetry-aware scheduler that equally-shares big-core cycles
among applications, as the results of Fig. 1b reveal.

The major contributions of this paper are as follows:
• We implement the necessary support in Linux to access TD-
provided information from the kernel and user space.

• We conduct an offline analysis to assess the degree of ac-
curacy of SF estimations provided by TD over time for a
diverse set of compute-intensive programs. Motivated by
various TD’s limitations, and for comparison purposes, we
also opted to build performance-counter based prediction
models generated via machine learning.

• We created kernel-level implementations for several exist-
ing asymmetry-aware scheduling algorithms [17, 27] that
leverage threads’ SFs to optimize different system metrics.

• To analyze the impact of the different methods for SF esti-
mation, we carried out an experimental study using a wide
range of multi-program workloads running on an Intel Alder
Lake processor under various asymmetry-aware schedulers.

The remainder of the paper is organized as follows. Section 2
discusses the closest related works. Section 3 describes Intel Thread
Director, and presents our analysis on the accuracy of SF estimation.
Section 4 outlines the implementation of the various asymmetry-
aware algorithms considered. Section 5 covers the experimental
evaluation, and Section 6 concludes the paper.

2 RELATEDWORK
Ourmain goal is to analyze how accurate SF predictions provided by
Thread Director are, and how effectively the OS can drive schedul-
ing decisions with these predictions. Existing methods to determine
threads’ SFs at run time can be grouped in three categories: direct
measurement, utilization of performance-counter based prediction
models, and reliance on specific hardware support for SF estimation.

Direct measurement, also referred to as IPC sampling [18, 32],
comes down to measuring the number of instructions per cycle
(IPC) of the thread on both core types with performance monitoring
counters (PMCs), and then approximating the SF with the IPC ratio,
while factoring in the cores’ frequencies. Despite the simplicity
of this approach, it usually incurs higher overhead than the other
techniques, due to the additional thread migrations across core
types required for gathering IPC values [27]. More importantly, this
technique is known to provide inaccurate SF predictions due to
(1) the utilization of IPC values from potentially different program
phases to build an SF estimate [30], and (2) the fact that the IPC
may suffer frequent oscillations, even within the same program
phase, due to shared-resource contention effects [11].

The second approach consists in gathering different runtime
metrics (IPC, cache miss rate, etc.) with PMCs as the thread runs
on the current core type, and then feeding a prediction model with
these metrics to obtain SF estimates [17, 25, 27, 30]. This technique
removes the need for thread migrations to read PMCs, but requires
building two platform-specific models: one for prediction of the
SF from the big core, and another for SF prediction from the small
core. Different machine-learning methods have been explored to
aid in the generation of SF estimation models [4, 19, 22, 27]. In this
work, we opted to utilize the methodology proposed in our earlier
work [27], which –to the best of our knowledge– is the only one
whose associated models were evaluated and implemented in a
kernel-level scheduler for AMPs, like the ones we used.

Lastly, hardware-based mechanisms specifically designed for SF
prediction have been also proposed [15, 31]. Intel Thread Director
constitutes a clear example of this type of hardware support, and it
is the first one of its kind that has been adopted in comercial AMP
processors. Unlike Windows 11’s, the Linux kernel does not cur-
rently feature support for TD. A recent kernel patch from Intel [23]
that provides access to the hardware feedback interface (HFI) [15]
–a simpler version of TD– will be included in the next stable version
of Linux (v5.18). However the purpose of this patch is to expose
HFI-provided information only to user space. Our goal, however, is
to leverage this information directly from asymmetry-aware sched-
ulers, so as to perform thread-to-core mappings transparently by
the OS kernel, without any kind of user intervention.

3 PREDICTING THE SPEEDUP FACTOR
In this section we begin by describing how Intel Thread Director
works, and by conducting an experimental analysis on its SF predic-
tion accuracy. Lastly, we outline the mechanism we used to build
SF prediction models via machine learning, and assess the accuracy
of the models obtained for our Alder Lake platform.

A) Intel ThreadDirector (TD). TD is a set of hardware facillities
enabling to guide the OS in making thread scheduling decisions
on Intel hybrid multicores [15, 16]. The TD hardware interface
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–only directly accessible from the OS kernel– consists of a memory-
resident table maintained by the hardware, and a set of per-core
and socket-wise registers. Henceforth, we will refer to the memory-
resident table as the TD table. As a thread runs on a given logical
processor (LP) the hardware provides the OS with feedback on
the thread’s execution characteristics. To obtain feedback, the OS
must periodically read the IA32_THREAD_FEEDBACK_CHAR register,
which reports the class ID (index) of the thread running on the
current LP. Scheduling-relevant performance and energy-efficiency
values associated with the thread’s execution can be retrieved by
accessing entries of the TD table associated with that class ID.

In the 16-core Alder Lake processor used in our experiments
(Intel Core i9-12900K), TD supports 4 class IDs (0–3), and provides
two feedback values (aka capabilities) for each class and LP: per-
formance (𝑃𝑒) and energy efficiency (𝐸𝑓 ). 𝑃𝑒 and 𝐸𝑓 values range
between 0 and 255. As described in detail in [15] the TD table con-
sists of a global header –made up of a timestamp and several flags
that signal recent table changes–, and a set of feedback entries for
various LPs that contain the actual feedback values for each class ID.
In our platform, the TD table features ten 8-byte feedback entries (1
byte for each capability and class). While each (big) P-core features
a separate entry –first eight entries–, a shared feedback entry exists
for each group consisting of 4 (small) E-cores –last two entries.

This work focuses on analyzing the effects of throughput and
fairness-oriented scheduling decisions made by catering to the SF
of the various threads. With Thread Director, an SF estimate can
be obtained by dividing the values of the 𝑃𝑒 capabilities for the
thread’s current class ID (as reported by the hardware) stored in
P-core and E-core entries of the TD table. So for example, let us
consider that, while a thread runs on a P-core, its current class ID
is 1. On our system, the 𝑃𝑒 values for this class ID on a P-core and
on E-core are 77 and 39 respectively, so the estimated SF is 1.97.

We should highlight that reading the IA32_THREAD_FEEDBACK
_CHAR register does not always provide a usable class ID, as the
hardware may not always have enough telemetry information to
determine it [15]. In particular, the lower byte of the register, which
reports the class ID, is only considered valid when bit 63 of the same
register (valid bit) is 1. When the valid bit is 0, the retrieved class ID
should be discarded, and then the OS must use the last valid class ID
obtained for its scheduling decisions [15]. A major limitation of the
hardware TD implementation in our platform, is that while reading
the IA32_THREAD_FEEDBACK_CHAR register reports a valid class ID
most of the time for the current thread on P-cores, an invalid class
is always obtained on E-cores. This is the case for all the programs
we used (including all SPEC CPU2006 and CPU2017 benchmarks).
Being unable to obtain a direct TD estimate for the thread’s SF from
a E-core poses a challenge for the implementation of TD-based
asymmetry-aware schedulers, as discussed in Sec 4.

To evaluate the accuracy of the SF prediction provided by Thread
Director, we ran all the benchmarks in the SPEC CPU2006 and
CPU2017 suites on both core types for 300B instructions, and com-
pared the actual SF values observed over time with the prediction
obtained with TD (P-cores only). To determine the actual SF over
time we monitored the IPC with PMCs during the execution of
each benchmark on a E-core and a P-core in isolation, and gath-
ered the IPC every 500M retired instructions. The SF for a certain
instruction window is calculated with the observed IPC on each

core type for that specific window, and by factoring in each core’s
frequency. The TD-prediction used for the comparison is the aver-
age of the SF estimates gathered with during every tick (4ms in our
platform) that falls within the current instruction window. Reading
TD information at this rate provides negligible overhead [7].

Fig. 2 shows the actual and TD-predicted SF values over time
for 20 representative benchmarks, which cover a wide spectrum
of profiles regarding prediction accuracy and microarchitectural
behavior. TD’s implementation in our platform provides a fixed SF
estimate for each class: 1.67 for Class 0, 1.97 for Class 1, 2.62 for Class
2, and 1.31 for Class 3. However, 99.9% of the TD class readings
in our experiments resulted in Class 0 or 1, so the predicted SF
values reported in the figures are mostly 1.67 or 1.97. In fact, Class
3 was never reported for any program, and Class 2 was assigned
only to a handful of samples of the milc program. This range of SF
estimates allows TD to get close to the actual average SF for a few
benchmarks (see Figs. 2(a)-(f)), but clearly overpredicts the SF of
many other programs (see Figs. 2(g)-(i)). Notably, for programs like
deepsjeng, bzip2, sjeng and exchange –which exhibit a CPU-
intensive execution profile but incur a high number of mispredicted
branches per 1K instructions– TD tends to overestimate the SF. The
results also reveal that TD may also underpredict the SF for some
programs (Figs. 2(m)-(p)), and even obtain predictions that greatly
differ from the actual values (Figs. 2(q)-(t)). All in all, TD provides
a mean absolute error of 0.38 in the SF prediction across all SPEC
CPU benchmarks, and a very low correlation coefficient (<0.1) is
observed when comparing predictions and actual values.

B) PMC-based SF models for Intel Alder Lake. The inaccu-
racies observed in TD-based SF predictions for some programs,
motivated us to build PMC-based prediction models by leveraging
machine learning techniques. To this end, we used the Phase-SF
methodology [27], which was proven succesful in building pre-
diction models for the Intel QuickIA prototype system. Phase-SF
consists of the following steps. First, a representative set of single-
threaded applications (𝐴), and a diverse collection of performance
metrics (PM) for comprehensive microarchitectural characteriza-
tion of programs on both core types must be selected. Second, all
applications in 𝐴 must be run on big and small cores in isolation
so as to enable the gathering of all performance metrics in PM
over time with PMCs. Notably, PMC values must be collected and
reset every time a fixed-size instruction window completes, so as
to later match PMC samples for the same program’s instruction
window gathered on different core types. Third, after merging the
per-program PMC data obtained on both core types, and calculating
the value of the various performance metrics and the SF for each
instruction window, these merged execution profiles are broken
down into a set of coarse-grained SF phases using an offline method.
Fourth, a summary file is generated for each program based on the
previous offline analysis; this file consists of a set of tuples –one for
each SF phase–, each including the average of the SF and that of
the values for each metric in PM for the PMC samples that belong
to the same program phase. Finally, the data of the summary files
for all programs is used as input to the additive-regression engine
provided by the WEKA machine-learning tool [13]. This results in
the generation of two prediction models, enabling SF estimation
from the big and from the small core, respectively.
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Figure 2: Observed SF values vs. SF predictions over time provided by Thread Director on the P core for various SPEC CPU programs.
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Figure 3: Observed SF values vs SF predictions over time provided by the big-core PMC-based estimation model for various SPEC CPU programs.

Table 1 enumerates the set of performance metrics that the fi-
nal estimation models for the big and the small core depend upon,
which constitute only a subset of all the metrics we gathered offline.
Note that the machine-learning method we used automatically
assigns low additive-regression coefficients to less relevant per-
formance metrics in the models, so irrelevant metrics could be
automatically discarded from the models [27]. Notably, most of the
metrics identified as relevant by the machine-learning engine for
SF prediction on the big core are based on the TMA (Top-Down

Microarchitecture Analysis) event type, which were recently intro-
duced by Intel to aid in the fine-grained identification of application
performance bottlenecks [34]. As a new feature of Intel Alder Lake
processors, these TMA metrics can be monitored altogether on
P-cores by using a single PMC [15]. In any case, the amount of
required PMC events for both estimation models do not exceed the
number of physical PMCs available, which greatly simplifies the
implementation.
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Performance metrics Small core Big core
Instructions retired per cycle (IPC) ✓
L3 cache accesses per 1K retired instr. ✓
Mispredicted branches per 1K retired instr. ✓
Fraction of pipeline (TMA) slots where no
micro-ops are being issued due to lack of
back-end resources.

✓

Fraction of pipeline (TMA) slots wasted
due to lack of core front-end resources

✓ ✓

Fraction of pipeline (TMA) slots wasted
due to incorrect speculation

✓

Fraction of pipeline (TMA) slots wasted
due to branch mispredictions

✓

Fraction of pipeline (TMA) slots wasted
due to misses in the instruction cache

✓

Ratio of the number of cache lines brought
into the L2 and into the L3 (cache reuse
indicator proposed in [14])

✓

Table 1: Metrics used for SF prediction on an Intel Core i9-12900K processor.

Fig. 3 shows PMC-based SF predictions on the big core for the
same benchmarks shown in Fig. 2. The corresponding predictions
on the small core, which show slightly better accuracy, were omitted
due to space constraints. Although the PMC-based models still lead
to important SF mispredictions for some programs (see Figs. 3(i), (j)
or (q)), they enable us to get closer to the average SF of the various
applications. The correlation coefficients (and mean absolute error)
for the estimation on the big and the small core across all 54 SPEC
benchmarks are 0.8 (0.19) and 0.84 (0.13), respectively. Note that
in generating the models, we used performance data from 150 SF
phases corresponding to 15 SPEC programs with a wide range of
behaviors regarding branch prediction, memory intensity and cache
reuse. In our experimental evaluation of Sec. 5 we use additional
applications different from those used to build these models.

4 ASYMMETRY-AWARE SCHEDULERS
For our experimental analysis we considered three previously-
proposed scheduling algorithms: an Asymmetry-Aware Round
Robin policy (AARR), Throughput-Optimized scheduling (TO), and
the ACFS algorithm, which strives to optimize fairness.

AARR [20, 32] equally shares big-core cycles among threads.
To this end, it keeps track of the amount of clock ticks each thread
has consumed on a big core, and triggers thread migrations every
so often to ensure an even distribution of big core cycles among
threads. Specifically, two threads running on different core types
are swapped when RR detects that the difference between the cycles
consumed on a big core by both threads exceeds a certain threshold.

TO [17, 18, 32] optimizes throughput by using big cores to run
those threads that currently exhibit the highest SF values.

ACFS [27] was proposed to improve the degree of fairness pro-
vided by AARR, while delivering better system throughput. Its
rationale is to even out the progress made by the various threads
by granting a greater fraction of big-core cycles to threads whose
performance is more likely to be highly degraded whenmapped to a
small core. To this end, ACFS assigns each thread an amp_vruntime
counter, which tracks its progress on the AMP throughout the
execution. This counter is incremented every tick consumed by
the thread on a big or a small core, and the increment applied

reflects both the current core’s performance, and the thread’s cur-
rent SF [27]. Because threads mapped on small cores tend to make
slower progress than big-core threads, ACFS evens out the progress
by swaping threads running on opposite core types when the dif-
ference between the associated amp_vruntime counters is greater
than a certain threshold. We should highlight that in our experi-
ments we did not consider other recently proposed fairness-aware
schedulers [11, 29], as they rely on specific assumptions on the
cache hierarchy that do not hold on Alder Lake processors.

To develop the various schedulers in the Linux kernel v5.16, we
used the PMCSched framework [5], implemented on top of the PM-
CTrack open-source monitoring tool [26]. This novel scheduling
frameworkmakes it possible to implement asymmetry-aware sched-
uling algorithms in a kernel module that can be loaded in vanilla
(unpatched) kernels with standard tracing support enabled [5]. To
evaluate how sensitive the TO and ACFS algorithms are to the
choice of the underlying method of SF prediction, we added sup-
port in our framework for three SF-estimation methods, referred to
as Thread Director (TD) based, Model based, and Big Model based.

The TD-based method relies on the threads’ SF estimates pro-
vided by Intel Thread Director, which –in the Alder Lake processor
we used– are available directly on big cores only (as stated in
Sec. 3A). We observed that triggering periodic migrations from
small to big cores so as to obtain up-to-date SF values for threads
assigned to small cores, leads to the same program-phase related
mispredictions issues of IPC sampling (see Sec. 2). To address these
issues –and inspired by previous works [11, 33]– our TD-based
method uses a per-thread history table to aid in SF prediction from
small cores. A thread’s history table –empty when the thread en-
ters the system– stores SF values corresponding to past execution
phases obtained with TD on a big core. As in [11], we represent each
phase in the table by means of a pair of control metrics gathered
on-line: the number of L1 cache accesses per 1K instructions, and
the fraction of branch instructions retired. Good properties of these
metrics are that they do not vary significantly across core types
for a specific phase, and remain stable even if shared-resource con-
tention exists [11]. The scheduler accesses the history table as soon
as new values of the control metrics are obtained with PMCs. If the
thread is currently running on a big core, the information for the
current phase is simply updated with the latest average SF obtained
with TD by using the procedure described in Sec. 3A. When the
thread runs on a small core, the table is accessed to retrieve an SF
prediction. If no information is found for the current phase (i.e., the
pair of control metrics is not close enough to any of those registered
in the table) the estimated SF used by the scheduler is the average
across SF samples in the history table. Notably, when the phase
miss rate is too high the scheduler forces a migration of the thread
onto a big core, thus making it possible to refresh the history table
with recent SF estimates. To prevent threads requiring frequent
history-table refresh operations from monopolizing big cores, their
migration rate is throttled using the mechanism proposed in [11].

TheModel-basedmethod leverages the PMC-based SF models
presented in Sec. 3B, which were built using machine learning.
When the Model-based method is enabled, the OS continuously
gathers the PMC metrics that the prediction model of the current
core type depends upon (Table 1), and obtains the SF prediction by
using the metric values as input to the model’s inference function.
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Figure 5: Normalized throughput and unfairness values delivered by the various scheduling algorithms

Lastly, the Big-Model based method was exclusively created
to conduct a fairer comparison with the TD-based method under
similar restrictions: SF estimates are only available directly on the
big core, and SF predictions on the small core are obtained indirectly
based on a history table. Note that the history table here stores SF
estimates provided by the PMC-based big-core model.

5 EXPERIMENTAL EVALUATION
For the evaluation we used a 16-core platform featuring an Intel
Core i9-12900K processor and 32GB DDR4 SDRAM. The processor
integrates 8 “Golden Cove” big (P) cores, and 8 “Gracemont” small
(E) cores, all sharing a 30MiB L3 LLC. Each P-core has a private
1.25MiB L2 cache. E-cores are grouped into two 4-core clusters;
cores in each cluster share a 2MiB L2 cache (L1 is private to each
core). To assess the effectiveness of Thread Director in aiding the
OS to improve throughput and fairness, we experimented with the
AARR, TO and ACFS scheduling algorithms, presented in Sec. 4.

For our experiments we ramdomly built 22 diverse workloads us-
ing 47 SPEC CPU programs. The total thread count in each compute-
intensive workload was set to match the total number of cores in
the AMP, as done in [11, 17, 32, 36]. The composition of the various
program mixes is depicted in Fig. 4. The first 10 mixes (W1-W10)
consist of programs that cover a wide range of average SF values.
The remaining workloads include mostly medium-SF and high-SF
programs (W11-W16), or predominantly low-SF and medium-SF
applications (W17-W22). In running the workloads, we follow a

similar methodology to that of previous works [6, 27, 30]. All appli-
cations in the mix are started simultaneously, and when one of them
completes, the program is restarted repeatedly until the slowest
application in the set completes three times. We use the geometric
mean of the completion times for each program to calculate the de-
gree of fairness and throughput, by using the Unfairness [8–10, 33]
and Aggregate Speedup [11, 27] metrics, respectively.

Fig. 5 shows the degree of throughput (the higher the better) and
unfairness (the lower the better) delivered by the different schedul-
ing algorithms normalized to AARR. The suffix in parentheses in
the names of the different variants of TO and ACFS denotes the un-
derlying method used to determine SFs at run time: “TD” –Thread
Director (TD) based–, “B” –Big-Model based method–, and “M” for
theModel-based method. All in all, the inaccuracies in the TD-based
SF prediction do not enable TO and ACFS to accomplish their goals.
Specifically, TO(TD) degrades throughput vs. AARR by 1% on aver-
age, and provides only a 9.3% maximum throughput improvement
(W16). Similarly, ACFS(TD) increases AARR’s average unfairness
figures by 5%. By contrast, when TO uses the PMC-based estima-
tion models on both core types (M variant), substantial throughput
improvements are obtained over the baseline (by up to 29.2%, and
by 20.6% on average). These estimation models are also effective
for ACFS(M), which achieves up to a 15.8% unfairness reduction
(W6), while reaping non-negligible throughput improvements over
AARR (10.4% on average). These results come from the higher SF-
prediction accuracy provided by the Model-based method, which
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allows schedulers to better identify actual high-SF programs, and,
in turn, to run them on big cores for longer time periods than the
other threads. In addition, the figures of TO(M) and ACFS(M) also
underscore that minimizing unfairness and maximizing throughput
are often conflicting optimization objectives on AMPs [27].

Lastly, we observe that the “B” method is in general more effec-
tive than TD, especially when it comes to assisting the TO scheduler;
in fact, TO(B) improves throughput by 7,43% on average vs. TO(TD).
This observation suggests that the utilization of the history table
to retrieve past-SF predictions is effective as long as big-core esti-
mates are minimally accurate, such as the ones we provided by our
PMC-based model. However, the modest fairness improvements of
ACFS in its different variants also indicate that enforcing fairness
requires SF prediction models with a higher degree of accuracy.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have performed an experimental analysis to de-
termine the accuracy of big-to-small speedup (or SF) predictions
provided by Thread Director (TD), and also assessed how effectively
the OS utilizes these predictions to make scheduling decisions on an
Intel Alder Lake processor. For comparison purposes, we also built
SF-prediction models for this processor based on performance mon-
itoring counters (PMCs). To this end, we use a methodology that ex-
ploits machine-learning methods [27]. To carry out our evaluation
we implemented the necessary support for TD in the Linux kernel,
to allow different kernel-level scheduling algorithms [17, 20, 27] to
access TD-provided SF estimates. Our experiments reveal that the
PMC-based models provide better SF-estimation accuracy than TD,
and are especially well suited to aid the OS in optimizing through-
put. As for future work, we plan on exploiting the hardware cache-
partitioning support present in the L2 cache shared by E-cores
in Intel Alder Lake to conduct scheduling optimizations. Another
interesting research avenue would be the experimentation with
future TD-enabled processors that allow the direct and independent
gathering of SF predictions from any core type.
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