
Theoretical Study on the Performance of an Asymmetry-Aware

Round-Robin Scheduler

Adrian Pousa, Juan Carlos Saez, Fernando Castro
Daniel Chaver and Manuel Prieto

Technical Report - Ref. 5028A - December, 2012

1 Introduction

Symmetric-ISA (Instruction Set Architecture) asymmetric-performance multicore processors
(AMPs) were shown to deliver higher performance per watt and area than its symmetric counter-
parts [6]. So it is likely that future multicore processors will combine a few fast cores character-
ized by complex pipelines, high clock frequency, high area requirements and power consumption,
and many slow ones, characterized by simple pipelines, low clock frequency, low area require-
ments and power consumption.

Despite their benefits, AMPs pose significant challenges to the system software [5]. One of
the main challenges is how to efficiently distribute fast-core cycles among the various applications
running on the system. Previous work has demonstrated that a simple asymmetry-aware round-
robin (RR) scheduler [2] provides better performance than default schedulers on most general-
purpose OSes [12], which are asymmetry agnostic. The RR scheduler simply fair-shares fast
cores among all threads in the workload.

Although the asymmetry-aware RR scheduler has been used extensively as a baseline for
comparison in previous work [2, 11, 12, 10] no comprehensive analytical analysis on the perfor-
mance of this scheduler has been carried out to date. In this report, we derive a set of analytical
formulas enabling to assess the real potential of this scheduler regarding system throughput and
fairness.

The remainder of this report is structured as follows. Section 2 presents the metrics we used
to assess throughput and fairness on AMP systems. Section 3 illustrates the derivation of the
formulas to estimate system throughput and fairness for multi-application workloads running
under RR. Finally, Section 4 shows how to estimate the performance benefit that a regular
data-parallel multithreaded application derives when running alone on an AMP under RR.

2 Metrics to assess throughput and fairness

To assess system throughput we use the Aggregate Speedup (ASP), which is defined as follows:

Aggregate Speedup =

n∑
i=1

(
CTslow,i

CTsched,i
− 1

)
(1)

where n is the number of applications in the workload, CTslow,i is the completion time of
application i when it runs alone in the system and uses slow cores only, and CTsched,i is the
completion time of application i under a given scheduler.

Technical Report Ref. 5028A - Dept. of Computer Architecture - Complutense University of Madrid -1-



Unlike other metrics to measure throughput, such as the Weighted Speedup [13] or the
Harmonic Mean Speedup [8], the ASP does not depend on instructions per cycle (IPC). Relying
on completion time to assess application performance is known to be more suitable than using
the IPC in scenarios where multithreaded applications are present in the workload [1].

Regarding fairness, previous works have employed diverse definitions. Some of them define a
scheme to be fair if it assigns the same CPU share to equal-priority threads [7]. Others consider
a scheme as fair if equal-priority applications suffer the same slowdown due to sharing the system
with respect to the situation in which the whole system is available to each application [4, 9, 3].
The latter definition is more suitable for CMP systems where degradation due to contention on
shared resources may occur. Therefore, we opted to use this definition and employ the unfairness
metric [9, 3], which is defined as follows:

Unfairness =
MAX(Slowdown1, ..., Slowdownn)

MIN(Slowdown1, ..., Slowdownn)
(2)

where Slowdowni = CTsched,i/CTfast,i, and CTfast,i is the completion time of application i
when running alone in the AMP.

3 Derivation of analytical for the unfairness and the aggregate
speedup

Our goal is to derive a set of analytical formulas to approximate the unfairness and the ag-
gregate speedup under RR for a multi-programmed workload consisting of n single-threaded
applications. For the derivation, we considered the scenario where applications in the workload
run continuously for a certain amount of time T .

For the sake of generality, we begin by deriving a set of formulas to compute both metrics
under any work-conserving1 asymmetry-aware thread scheduler, whose behavior is expressed
only in terms of how fast-core cycles are distributed among applications. Specifically, throughout
the execution the scheduler allots each application app a certain fast-core time fraction, denoted
as Fapp, such that 0 ≤ Fapp ≤ 1, where Fapp = 1 means that the application would be mapped
to a fast core the whole time. Since RR equally shares fast cores among applications, the ASP
and the unfairness metrics for RR can be computed by replacing Fapp with NFC

n in the resulting
formulas, where NFC denotes the number of fast cores.

To make the derivation tractable, we make the following simplifying assumptions:

• The number of applications in the workload does not exceed the total number of cores.

• Each application exhibits a uniform fast-to-slow speedup throughout execution.

• The analytical formulas derived in this section do not account for migration overheads
and shared-resource contention. Note, however, that the OS may take into account these
aspects when making scheduling decisions.

Prior to deriving the formulas, we introduce some auxiliary notation:

• NFC , NSC : Number of fast and slow cores of the AMP system, respectively.

1Such a scheduler does not leave idle cores when the total thread count is greater or equal to the number of
cores in the platform.

Technical Report Ref. 5028A - Dept. of Computer Architecture - Complutense University of Madrid -2-



• SPIFC , SPISC : Average number of seconds per instruction for a given application when
running on a fast and a slow core, respectively.

• SF : Fast-to-slow speedup or Speedup factor (SF) of the application. For single-threaded
applications, SF = SPISC

SPIFC
.

• NI: Total number of instructions the application executes until completion.

• Ffast, Fslow: Time fraction over CTsched that the application runs on a fast and a slow
core, respectively. Obviously, Ffast + Fslow = 1.

• ffast, fslow: Fraction of instructions (over NI) that the application completes on a fast and
a slow core under a given scheduler. Obviously, ffast + fslow = 1.

To compute the Unfairness, we first obtain a formula enabling to approximate an appli-
cation’s slowdown under a given scheduler in terms of ffast and the application’s SF . The
derivation process is as follows:

Slowdown =
CTsched

CTfast

=
NI · SPIFC · ffast + NI · SPISC · fslow

NI · SPIFC

=
NI · SPIFC · ffast + NI · SPIFC · SF · (1− ffast)

NI · SPIFC

=
NI · SPIFC · (ffast + SF · (1− ffast))

NI · SPIFC

= ffast + SF · (1− ffast) (3)

We now derive the equation for the aggregate speedup under a given scheduler in terms of
the SF and ffast of each application i.

Aggregate Speedup =
n∑

i=1

(
CTslow,i

CTsched,i
− 1

)
=

=

n∑
i=1

(
NIi · SPISC,i

NIi · SPIFC,i · ffast,i + NIi · SPISC,i · fslow,i
− 1

)

=

n∑
i=1

(
NIi · SPISC,i

NIi ·
SPISC,i

SFi
· ffast,i + NIi · SPISC,i · fslow,i

− 1

)

=
n∑

i=1

 NIi · SPISC,i

NIi · SPISC,i ·
(
ffast,i
SFi

+ (fslow,i)
) − 1


=

n∑
i=1

(
1

ffast,i
SFi

+ (1− ffast,i)
− 1

)
(4)

Since the behavior of the investigated schedulers is expressed in terms of the fast-core time
distribution they make, we now devise a means to approximate the slowdown and the aggregate

Technical Report Ref. 5028A - Dept. of Computer Architecture - Complutense University of Madrid -3-



speedup based on Ffast and SF. To make this possible, we derive Equation 7, which establishes
the relationship between Ffast and ffast.

CTsched = NI · SPIFC · ffast + NI · SPISC · fslow
= NI · SPIFC · ffast + NI · SPIFC · SF · (1− ffast)

= NI · SPIFC · (ffast + SF · (1− ffast)) (5)

Note also that:

CTsched · Ffast = NI · ffast · SPIFC

⇒ CTsched =
NI · ffast · SPIFC

Ffast
(6)

Merging equations 5 and 6, we obtain:

NI · ffast · SPIFC

Ffast
=

= NI · SPIFC · (ffast + SF · (1− ffast))

⇒ ffast =
1

1
SF ·

(
1

Ffast
− 1
)

+ 1
(7)

The fraction of instructions executed by an application under RR (ffast−RR) can be obtained
by replacing Ffast with NFC

n in Equation 7.

⇒ ffast−RR =
1

1
SF ·

(
n

NFC
− 1
)

+ 1
(8)

Finally, the aggregate speedup and unfairness for RR can be computed by using ffast−RR

instead of ffast in Equations 2–3 and ffast−RR,i instead of ffast,i in Equation 4 respectively.

4 Speedup of multithreaded application running under RR

Our goal is to derive a formula to estimate how much a regular data-parallel multithreaded
application would speed up in the scenario where all fast cores in the AMP are equally shared
among the application threads. The speedup is computed with respect to a slow scenario,
namely, compared to the performance that would result from running all the application threads
on slow cores.

To make the derivation tractable, we make several simplifying assumptions about the nature
of the parallel application:

• We assume that the application is perfectly balanced (i.e. the work is evenly distributed
among the threads).

Technical Report Ref. 5028A - Dept. of Computer Architecture - Complutense University of Madrid -4-



• For the derivation, we also assume that the application consists of k parallel phases (k > 1)
separated by synchronization barriers. Because the application is perfectly balanced, we
assume that threads reach the synchronization barriers at the same time in the slow
scenario.

• In many data-parallel applications, all their threads exhibit very similar speedup factors
since they execute the same code with different data. So for simplicity, we assume the SF
is the same across threads.

• We further assume that the number of threads in the application does not exceed the num-
ber of cores in the AMP. This assumption is reasonable because CPU-bound applications
are not likely to be run with more threads than cores.

• We do not account for migration overheads, so the formulas shown below approximate an
upper bound of the achievable speedup.

In deriving the speedup formula, we first obtain an estimate of the speedup for a single
parallel phase and then demonstrate that the obtained formula is similar to the one derived
assuming k parallel phases.

Prior to illustrating the derivation of the formulas, we introduce some auxiliary notation:

• CTSC,i : Completion time of the i-th parallel phase in the slow scenario. Given that the
multithreaded application is perfectly balanced, CTSC,i matches the completion time of

any of its threads for the parallel phase. Note also that CTslow =
k∑

i=1

CTSC,i.

• CTRR : Completion time of the application under RR.

• CTRR,i : Completion time of the i-th parallel phase under RR, such that CTRR =
k∑

i=1

CTRR,i. Because RR assigns the same fast-core share across threads and the ap-

plication is perfectly balanced, CTRR,i matches the completion time of any of its threads
for the parallel phase.

• N : Number of threads in the application.

• NIi : Number of (dynamic) instructions in the i-th parallel phase.

• NIT,i : Number of instructions executed by any application thread in the i-th parallel
phase. Since the application is balanced, all threads execute the same number of instruc-
tions till reaching the barrier. As such, NIT,i=NIi/N.

• Ffast,i,Fslow,i : Time fraction over CTRR,i that a thread runs on a fast and a slow core
in the i-th parallel phase. Under RR, all threads receive the same share of fast core time:
Ffast,i = NFC

N . Note that to ensure this ideal fast-core cycle distribution, threads must be
swapped between fast and slow cores at an infinitesimally small swap period during the
parallel phase.

• ffast,i, fslow,i : Instruction fraction over NIT,i that a thread executes on a fast and a slow
core in the i-th parallel phase. Obviously, ffast,i + fslow,i = 1.

Technical Report Ref. 5028A - Dept. of Computer Architecture - Complutense University of Madrid -5-



As stated earlier, we can approximate CTslow with the time that any thread in the application
takes to execute all its instructions on a slow core:

CTslow =

k∑
i=1

CTSC,i =

k∑
i=1

(SPISC ·NIT,i)

=
k∑

i=1

(SPISC ·
NIi
N

)

=
k∑

i=1

(SF · SPIFC ·
NIi
N

) (9)

Similarly, we can express CTRR as follows:

CTRR =
k∑

i=1

CTRR,i (10)

where, for each parallel phase i ∈ {1..k}, we have that:

CTRR,i = ffast,i ·NIT,i · SPIFC + fslow,i ·NIT,i · SPISC
= NIT,i · (ffast,i · SPIFC + fslow,i · SPISC)

= NIT,i · (ffast,i · SPIFC + (1− ffast,i) · SPISC)

= NIT,i · (ffast,i · SPIFC + (1− ffast,i) · SPIFC · SF)

=
NIi
N
· SPIFC · (ffast,i + (1− ffast,i) · SF) (11)

Note also that:

CTRR,i · Ffast,i = ffast,i ·NIT,i · SPIFC

= ffast,i ·
NIi
N
· SPIFC (12)

Clearly, if N ≤ NFC , RR would map all application threads to fast cores (ffast,i = Ffast,i = 1).
Hence, the speedup under this scheduler would match the SF:

SpeedupRR(N≤NFC) =
CTslow

CTRR
=

k∑
i=1

CTSC,i

k∑
i=1

CTRR,i

=

=

k∑
i=1

(
SF · SPIFC ·

NIi
N

)
k∑

i=1

(
NIi
N
· SPIFC

) = SF (13)

Technical Report Ref. 5028A - Dept. of Computer Architecture - Complutense University of Madrid -6-



To aid in approximating the speedup when N > NFC , we now proceed to derive an equation
that captures the relationship between ffast,i and Ffast,i provided that Ffast,i = NFC

N under RR.
From Equations 11 and 12, we can isolate ffast,i as follows:

ffast,i · NIi
N · SPIFC

Ffast,i
=

NIi
N
· SPIFC · (ffast,i + (1− ffast,i) · SF)

⇒ ffast,i =
SF

1
Ffast,i

− 1 + SF
=

1

1
SF ·

(
1

Ffast,i
− 1
)

+ 1

⇒ ffast,i =
1

1
SF ·

(
N

NFC
− 1
)

+ 1
(14)

Combining Equations 9-12 and 14, we derive the speedup for the parallel application under
RR when N > NFC :

SpeedupRR(N>NFC) =
CTslow

CTRR
=

k∑
i=1

CTSC,i

k∑
i=1

CTRR,i

=

=

k∑
i=1

(
SF · SPIFC ·

NIi
N

)
k∑

i=1

(
NIi
N
· SPIFC · (ffast,i + (1− ffast,i) · SF)

)

=

k∑
i=1

(
SF · SPIFC ·

NIi
N

)
k∑

i=1

(
NIi
N
· SPIFC · (ffast,i · (1− SF) + SF)

)

=

SPIFC
N · SF ·

k∑
i=1

(NIi)

SPIFC
N ·

(
1

1
SF

·
(

N
NFC

−1
)
+1
· (1− SF) + SF

)
·

k∑
i=1

(NIi)

=
SF(

1
1
SF

·
(

N
NFC

−1
)
+1
· (1− SF) + SF

)

⇒ SpeedupRR(N>NFC) =
NFC

N
· (SF − 1) + 1 (15)

Technical Report Ref. 5028A - Dept. of Computer Architecture - Complutense University of Madrid -7-



More generally, we can rewrite the speedup formula as follows:

SpeedupRR =
MIN(NFC , N)

N
· (SF − 1) + 1 (16)

References

[1] A. R. Alameldeen and D. A. Wood. IPC considered harmful for multiprocessor workloads.
IEEE Micro, 26(4), 2006.

[2] M. Becchi and P. Crowley. Dynamic Thread Assignment on Heterogeneous Multiprocessor
Architectures. In Proc. of CF ’06, pages 29–40, 2006.

[3] E. Ebrahimi et al. Fairness via source throttling: a configurable and high-performance
fairness substrate for multi-core memory systems. ASPLOS ’10, 2010.

[4] R. Gabor, S. Weiss, and A. Mendelson. Fairness and throughput in switch on event multi-
threading. In Proc. of MICRO ’06, 2006.

[5] M. Gillespie. Preparing for The Second Stage of Multi-Core HW: Asymmetric (Heteroge-
neous) Cores. Intel White Paper, 2008.

[6] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures: the Potential for
Processor Power Reduction. In Proc. of MICRO 36, 2003.

[7] T. Li et al. Operating system support for overlapping-ISA heterogeneous multi-core archi-
tectures. In HPCA’10, pages 1–12, 2010.

[8] K. Luo, J. Gummaraju, and M. Franklin. Balancing thoughput and fairness in SMT pro-
cessors. In ISPASS, pages 164–171, 2001.

[9] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip multipro-
cessors. In Proc. of MICRO ’07, 2007.

[10] V. Petrucci, O. Loques, and D. Mossé. Lucky scheduling for energy-efficient heterogeneous
multi-core systems. In Proc. of the 2012 USENIX HotPower’12, pages 7–7, 2012.

[11] J. C. Saez et al. A Comprehensive Scheduler for Asymmetric Multicore Systems. In Proc.
of ACM Eurosys ’10, 2010.

[12] J. C. Saez et al. Leveraging workload diversity through OS scheduling to maximize per-
formance on single-ISA heterogeneous multicore systems. J. Parallel Distrib. Comput.,
71:114–131, January 2011.

[13] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous multithreading
processor. In ASPLOS, 2000.

Technical Report Ref. 5028A - Dept. of Computer Architecture - Complutense University of Madrid -8-


