Rapid development of OS support with
PMCSched for scheduling on asymmetric
multicore systems

Carlos Bﬂbaol[0000—0002—4750—5124]7 Juan Carlos Saezl[0000—0003—1343—7108}, and
Manuel Prieto-Matiag![0000—-0003—0687-3737]

Facultad de Informatica, Universidad Complutense de Madrid, Spain
{cbilbao, jcsaezal ,mpmatias}@ucm.es

Abstract. Asymmetric multicore processors (AMPs) couple high-perfor-
mance big cores and power-efficient small ones, all exposing a shared in-
struction set architecture to software, but with different microarchitec-
tural features. The energy efficiency benefits of AMPs together with the
general-purpose nature of the various cores, have led hardware manufac-
tures to build commercial AMP-based products, first for the mobile and
embedded domains, and more recently for the desktop market segment,

as with the Intel Alder Lake processor family. This indicates that AMPs
may become a solid and more energy efficient replacement to symmetric
multicores in a wide range of application domains.

Previous research has demonstrated that the system software can sub-
stantially improve scheduling —critical to get the most out of heteroge-
neous cores— by leveraging hardware facilities that are directly managed
by the the OS, such as performance monitoring counters, or the recently
introduced Intel Thread Director technology. Unfortunately, the OS-level
support enabling to access scheduling-relevant hardware support may
take a long time to be adopted in operating systems, or may come in
forms that make its utilization challenging from specific levels of the sys-

tem software stack, especially in production systems. To fill this gap, we
propose the PMCSched framework, which enables the creation of cus-

tom OS support on Linux to aid in the design of novel scheduling and
resource-management policies for multicores implemented at different

layers of the system software, but without requiring to patch the kernel.

To demonstrate the potential of our framework, we implement a set of
OS-level schedulers for AMPs, that make use of custom OS extensions to
access scheduling-relevant hardware facilities in an x86 AMP processor.

Keywords: Asymmetric multicore processors - Scheduling - Operating
Systems - Runtime Systems - Linux kernel - Intel Alder Lake

1 Introduction

Energy efficiency has become one of the most critical constraints of processor
design [14]. The quest for improved energy efficiency substantially contributed

2 C. Bilbao et al.

to the proliferation of heterogeneous architectures that combine within the same
platform different types of cores and processing units for diverse and special-
ized uses [10]. Asymmetric multicore processors (AMPs) constitute an attractive
type of heterogeneous architecture where high-performance big cores and power-
efficient small ones —all exposing a shared ISA (instruction set architecture)— are
combined on the same system. The common ISA in conjunction with the general-
purpose nature of the AMP cores, allows the execution of legacy (unmodified)
software. These facts, along with AMPs’ energy efficiency benefits, have drawn
the attention of major hardware players, leading to the massive release of com-
mercial AMP products for mobile platforms, such as those based on the ARM
big. LITTLE processor [28]. Today, the Intel Alder Lake processor family and the
Apple M1 SoC, are clear examples of the expansion of AMPs toward the desk-
top market segment [3I]. Moreover, in the high performance computing (HPC)
domain, the combination of different core types with a shared ISA has also been
explored; the Sunway TaihuLight supercomputer is a representative case [68].

Despite the remarkable benefits of AMPs [19], effectively scheduling diverse
programs,/tasks on heterogeneous cores poses a significant challenge to the var-
ious system software layers [2TI25IT0I5U6]. When a single multithreaded applica-
tion runs alone on an AMP system, smart user-level scheduling within the run-
time system is the key to making the most out of its heterogeneous cores [6/30].
However, in multi-application scenarios, and especially under the presence of
legacy programs, the OS scheduler plays an essential role in transparently deliv-
ering the benefits of AMPs to the end user [I825]T0II6].

Previous research has demonstrated that the runtime system and the OS
scheduler can perform optimizations on AMPs by leveraging hardware features
that are directly controlled by the OS kernel and exposed to user space, such
as Performance Monitoring Counters (PMCs) [I0J36/18] or Dynamic Voltage
and Frequency Scaling (DVFS) [35]7]. Often, the support to conveniently access
new scheduling-relevant hardware features from the system software may take
time to be adopted in operating systems [3I], or it may come in the form of
architecture-specific interfaces that limit application portability or make its uti-
lization impossible from particular levels of the software stack [IIJI7]. Take for
instance the Linux kernel, that does not currently feature support for the Intel
Thread Director (TD) technology [31], unlike the proprietary Windows 11 ker-
nel. TD is a set of scheduling-related hardware facilities —introduced with Alder
Lake processors— that provide the system software with performance and energy
efficiency hints to aid in carrying out effective thread-to-core mappings on In-
tel AMPs. Implementing custom mechanisms in the OS kernel to leverage these
new —yet unsupported— features directly from the OS scheduler, or exposing
them to user space involves a substantial development effort, due to the inher-
ent challenges associated with kernel-level programming [26/11]. At the same
time, custom OS-level extensions could be difficult to be adopted in production
systems, where patching the OS kernel may be impractical.

To address these issues, we propose PMCSched, a framework for the Linux
kernel that enables rapid development of the OS-level support required to create

Rapid development of OS support with PMCSched for scheduling on AMPs 3

custom scheduling and resource-management schemes on both symmetric and
asymmetric multicore systems. Unlike other existing frameworks that require
patching the Linux kernel to function [4[20/26/39], PMCSched makes it possible
to incorporate new scheduling-related OS-level support in Linux via a kernel
module that can be loaded in unmodified kernels, making its adoption easier in
production systems. Notably, the main focus of this framework is to simplify the
creation of novel scheduling and resource-management strategies that are either
implemented entirely in the OS kernel, or require changes in different layers of
the system software, so as to benefit from coordinated decisions between the
runtime system and the OS scheduler [T3JT0J30].

As a proof of concept of our framework, in this work we implement differ-
ent asymmetry-aware OS-level schedulers on top of an unmodified Linux kernel
v5.16, and evaluate their effectiveness by running different multi-application wor-
loads on an Intel Alder Lake processor. These schedulers make use of PMCs and
leverage the Intel Thread Director technology [I5/16], by accessing such hardware
facilities directly from kernel space.

The remainder of the paper is organized as follows. Section [2] discusses related
work. Section [3] provides an overview of PMCSched design and introduces its
main implementation challenges. Section [4] covers the experimental case study
on scheduling for Alder Lake processors, and Section [b| concludes the paper.

2 Related Work

A large body of work has proposed asymmetry-aware scheduling strategies for
adoption on either runtime systems [BI3725] or OS kernels [I8T0J3T]. Frequently,
such endeavors culminate in tools and frameworks that aim to ease the develop-
ment and analysis of new scheduling algorithms; these are likewise some of the
main goals of this paper.

Recent studies have shown that scheduling algorithms that come in stock
general-purpose OSs exhibit suboptimal behavior for different workloads on a
wide range of processor architectures [I0/236]. At the same time, making the
required changes in an OS kernel to build effective scheduling policies specifically
tailored to custom workloads or microarchitectures may be a significant burden
to the average developer [26/39]. On many monolithic kernels such as Linux, the
development of new OS scheduling policies constitutes a labor intensive task, as
the kernel itself needs to be modified. More specifically, testing any scheduling-
related kernel modification requires compiling and reinstalling the kernel, and
finally rebooting the machine for the changes to take effect. Testing an individual
change in this way may as well take a full a coffee break, depending on the
features and resources of the target platform and the development host.

To overcome these problems, some researchers have resorted to evaluating
their proposed OS-level schedulers via simplistic user space prototypes [3I3519].
Even though this approach may allow to draw interesting insights and also ben-
efit from leveraging application-level metrics, strategies implemented in this way
suffer from the limitations imposed to userland, such as the additional overhead

4 C. Bilbao et al.

of context switches and extra system calls required for dynamic thread affinity
and performance monitoring [26], or the inability to quickly react to low-level
scheduling-related events (e.g., a thread blocks due to I/O or a page fault), thus
wasting CPU cycles [II]. In addition, user-level scheduling prototypes cannot
access hardware extensions not currently exposed by the OS kernel.

Scheduling frameworks, such as those proposed in [3926/4] or PMCSched it-
self, aim to overcome some of the aforementioned limitations. LUSH permits the
creation of user-level schedulers for AMPs without special execution privileges,
and introduces kernel-level changes to allow fine-grained access to PMCs from
user space. Mvondo et al. [26] propose the extension of existing OS APIs, so as to
allow the development of kernel-level schedulers programmable from user-space
using a safe and controlled environment. LITMUS [4], by contrast, constitutes
a substantial fork of the Linux kernel with extensions to facilitate program-
ming of real-time kernel-level scheduling algorithms. Contrary to such solutions
—some of them restricted to specific domains [39/4]- PMCSched allows to create
custom scheduling-related OS-level modifications without actually patching the
kernel. This constitutes a major advantage, as getting profound modifications
of the kernel accepted upstream is an arduous task; so much so that researchers
tend to forget about that possibility altogether and treat their software as re-
search prototypes with no hope of production integration in sight [26], even
after conducting the required security audits. Conversely, the big effort required
to maintain multiple project forks for various releases of the Linux kernel often
shortens the lifespan of the associated projects [38].

Other studies explore the challenges of OS scheduling on highly heteroge-
neous architectures [25]. Of special attention is the case of Popcorn Linux [2],
which targets heterogeneous systems consisting of nodes with different ISAs,
opening the door to parallel ISA-heterogeneous runtime scheduling [24]. These
efforts are orthogonal to ours, formulating a problem with several interconnected
computing nodes with different processor architectures (e.g., x86 and ARM).

3 PMCSched: Implementation challenges and design

Motivation and challenges. PMCSched is implemented on top of PMCTrack,
a performance monitoring tool [33] for Linux that was open sourced back in
2015 [32]. Unlike Perf Events [38] —the default Linux subsystem to access hard-
ware facilities, such as performance monitoring counters (PMCs)— PMCTrack
was not primarily designed to only expose hardware monitoring facilities to user
space, but to assist the system software when performing runtime optimizations
based on these hardware facilities. The operations for which the system software
can benefit from PMCTrack include scheduling [34/10] and resource manage-
ment [II]. The main advantages of relying on PMCTrack for such tasks are its
ability to foster new OS-level features as part of an extensible loadable kernel
module, and its efficient architecture-independent API to access PMCs within
the kernel on a wide range of architectures (x86, ARMv7, ARMvS, etc.). Fig.

Rapid development of OS support with PMCSched for scheduling on AMPs 5

(End User) (User applications / Runtime systems)

PMCTrack-GUI

user space

PMCTrack Command-Line Tools

libpmctrack

®

/proc/pmc/* entries

Linux kernel

Linux Core Scheduler
I

PMCSched scheduling-related hooks
(introduced with dynamic FTrace & tracepoints)

PMCTrack architecture-independent core

PMCTrack
kernel module

PMCSched Monitoring modules PMC access backends
. . " and Resource
Pluginl || Plugin2 PluginN management APls Perf AMD Intel ARM

(Hardware Monitoring and scheduling-related facilities)

Fig. 1. PMCSched components (in green) inside PMCTrack’s architecture.

depicts the various components of PMCTrack and their relationship, described
in detail in [33)].

With the PMCSched framework we take PMCTrack’s potential one step fur-
ther by enabling rapid development of OS support for scheduling and resource
management for Linux within a loadable kernel module. We need to highlight this
because hitherto new scheduling policies could not be implemented as a kernel
module [20I26], since no specific API exists for that purpose within the Linux
scheduler. When creating novel OS-level schedulers for Linux without modify-
ing the kernel, three main challenges have repeatedly appeared: (1) the inability
to execute code in a kernel module in immediate response to the occurrence of
key scheduling-relevant events —context switches, thread creation/destruction,
etc.— (2) the lack of a standardized method to seamlessly extend the Linux task
structure with new per-thread scheduling related fields that custom schedulers
typically require to function, and (3) how to efficiently customize the behavior
of the Linux load balancer. Notably, the first two barriers also arise when at-
tempting to manage performance counters at the low level, and for that reason,
most PMC tools require changes in the kernel; PMCTrack adds the associated
functionality via a small portable kernel patch [33].

Our solution. PMCSched addresses the three aforementioned issues without
patching the kernel as follows. First, to be aware of key scheduling events from
a kernel module, PMCSched installs scheduling-related hooks (callbacks) lever-
aging two modern tracing facilities of the Linux kernel: dynamic ftrace |29] and
tracepoints [22]. These two tracing technologies rely on dynamic and static kernel
instrumentation, respectively. Noticeably, both are supported on a wide range
of processor architectures, and can be found enabled by default on the most
popular Linux distributions. Unlike other kernel instrumentation facilities (like
Kprobes), these technologies make it possible for a module to be notified when

6 C. Bilbao et al.

a kernel function is invoked or when a static tracepoint is reached with virtually
no overhead [29/22]. Not only do PMCSched hooks —depicted in Fig. [1- enable
the implementation of custom schedulers in a kernel module, but also allowed
us to eliminate the need for the PMCTrack kernel patch entirely [27]. Secondly,
PMCSched provides a seamless mechanism to extend the task structure with
new thread-specific data without modifying the kernel. To this end, whenever a
thread enters the system, PMCSched associates a dummy software event from
the Perf Events subsystem to the thread, by inserting the event into the event list
present in Linux’s task structure (perf_event_list field). The structure of this
dummy event (struct perf_event) contains a void pointer field (pmu_private)
that can be utilized to point to any other structure. To simplify the integration
of PMCSched in PMCTrack, we use the event’s void pointer to point to PM-
CTrack’s per-thread structure (pmon_prof_t). PMCSched scheduling fields can
be seamlessly added without modifying the kernel, by extending the structures
definition inside PMCTrack’s kernel module sources.

To make it possible to implement custom load balancing policies, PMCSched
introduces the core group abstraction. Essentially, cores in the system are orga-
nized into different sets (or core groups) based on their type (for AMP systems)
or their hierarchical relationship in the platform’s topology (e.g., cores sharing
a last-level cache, or part of the same NUMA node). PMCSched automatically
divides cores into different core groups based on system topology, but consider-
ing a configurable granularity (LLC, socket or NUMA domain). To implement
custom and scalable OS-level load balancing policies or perform specific thread-
to-core mappings, a scheduler implemented in PMCSched must assign threads
to specific core-groups by using affinity masks. In using this approach, enforcing
load balancing across cores within the same group is up to the Linux load bal-
ancer, which respects affinity masks. We should also highlight that PMCSched
associates a set of linked lists to each core group (spin-lock protected), making
it possible to keep track of active threads or multithreaded processes associated
with each core group. This design approach allows to make scheduling decisions
independently for threads assigned to different core groups, and favors scalable
designs that reduce contention in accesses to core-group specific data structures.

A new scheduling or resource management algorithm can be implemented by
creating a scheduling plugin, which —as illustrated in Fig. [I}- becomes a part of
the PMCSched subsystem within PMCTrack’s kernel module. Building a plugin
boils down to instantiating an interface of scheduling operations and implement-
ing the corresponding interface functions in a separate ".c" file within the mod-
ule sources. The various algorithm-specific operations are invoked from the core
part of the scheduling framework when a key scheduling-related event occurs,
such as when a threads enters the system, terminates, becomes runnable/non-
runnable, or when tick processing is due to update statistics. The framework also
provides a set of callbacks to carry out periodic scheduling activations from inter-
rupt (timer) and process (kernel thread) context on each core group separately,
thus making it possible to invoke a wide range of blocking and non-blocking
scheduling-related kernel API calls, such as those to map a thread to a specific

Rapid development of OS support with PMCSched for scheduling on AMPs 7

CPU or core group. This modular approach to creating scheduling algorithms re-
sembles the one used by scheduling classes (algorithms) inside the Linux kernel,
but with a striking advantage: PMCSched scheduling plugins can be bundled in a
kernel module that can be loaded on unmodified kernels. Moreover, plugin devel-
opers have access to a rich set of APIs available in PMCTrack, empowering them
to configure performance counters seamlessly and retrieve PMC values in a per-
thread fashion, to gather data from other hardware monitoring features [33I31],
or to govern hardware facilities for shared-resource contention mitigation (e.g.,
LLC partitioning) available on Intel and AMD processors [11/I].

OS-runtime interaction and Future Work. As previously stated, PMC-
Sched could also be used as a tool to perform system-software optimizations
that exploit synergistic interactions between a user-level runtime system and
the OS [13130]. To allow different types of interaction between user space and
the kernel, the current version of PMCSched exports a set of special files under
the /proc filesystem. For example, the value of configurable parameters of the
currently active scheduling plugin can be retrieved/altered by reading/writing
from/to those special files. PMCSched also supports the creation of a per-thread
page-sized memory region that can be shared between kernel and user space, so
as to allow the runtime system to share critical application-level metrics with
the OS (e.g., QoS metrics for throughput or latency constraints) and, at the
same time, enable the OS to expose information not directly accessible from
the runtime system, such as Thread Director performance and energy-efficiency
estimates for the current core type where the thread runs [31I]. As for future
work, and by leveraging this or other communication features —such as netlink
sockets—, we plan to implement an OS/runtime interaction scheme to enable effi-
cient execution of multiple data-parallel OpenMP programs on an AMP system,
where both layers of the system software play an essential role [30/6].

4 Experimental case study

To demonstrate the applicability of the PMCSched framework, we experimented
with a system equipped with an Intel Core 19-12900K “Alder Lake” processor
and 32GB DDR4 SDRAM. This AMP processor combines 8 “Golden Cove” big
(P) cores, and 8 “Gracemont” small (E) cores. E-cores are grouped into two 4-
core clusters, each group sharing a 2MiB L2 cache. P-cores, by contrast, have
a private 1.25MiB L2 cache. Every core in the platform integrates a private L1
cache, but shares a 30MiB L3 (LLC) with the remaining E and P cores. With
our experiments we evaluate how effectively an OS-level scheduler implemented
with our framework can improve the overall system throughput on an Intel Alder
Lake processor.

Maximizing throughput on AMPs. Previous research has demonstrated
that, to maximize throughput in the context of multi-program workloads, the
scheduler needs to be able to (1) determine at runtime the performance benefit
that each thread in the workload derives from running on a big core relative
to a small one, and then (2) use big cores for running threads that exhibit

8 C. Bilbao et al.

a larger relative performance benefit from such cores, while possibly readjust-
ing the mappings dynamically based on program-phase changes. Henceforth,
we will refer to the big-to-small performance benefit as the thread’s Speedup
Factor (SF). Similarly, we will now use the acronym HSF (i.e., High SF) to
refer to a dynamic scheduling strategy that aims to maximize throughput by
mapping high-SF threads to big cores. While this experimental analysis focuses
on workloads consisting of compute-intensive single-threaded applications, it is
worth noting that other factors beyond the SF need to be considered for multi-
threaded programs, such as latency constraints [12], load balancing and synchro-
nization [6l30], along with other interdependencies among tasks/threads in the
application [5].

Implementation of scheduling algorithms. One of the main deltas among
the various HSF implementations [T9I834] is the underlying method employed
to determine the SF online. In this work we explore the effectiveness of two
SF prediction methods: PMC-based estimation models [I82834], and reliance
on specific hardware support for SF estimation [I6J15]. Regarding the first pre-
diction method, we use the two SF-estimation models proposed in our earlier
work [31], which were specifically built for SF prediction from the big and small
cores of an Intel Alder Lake processor. The methodology used to build these
estimation models [34], the specific performance events they depend upon, and
a detailed discussion on their accuracy can be found in [3I]. For the hardware-
aided SF prediction we leverage the Intel Thread Director (TD) technology, a
set of hardware facilities —first introduced in Alder Lake processors— enabling
to guide the OS in making thread scheduling decisions on Intel hybrid multi-
cores [I5J16]. To predict a thread’s current SF with TD, the OS must retrieve
its TD class (i.e., an integer in {0..3} in the Alder Lake processor we used) by
reading a model-specific register, and then calculate the ratio of two performance
estimates (for big and small cores) associated with the current TD class; these
performance estimates are stored in a memory-resident table that the hardware
maintains, which is directly readable from the OS kernel alone.

We experimented with several asymmetry-aware schedulers implemented in
PMCSched: an Asymmetry-Aware Round-Robin (AARR) scheduler [2I] that
equally shares big and small cores among applications; and three variants of the
HSF scheduler, which optimize throughput. The first variant of HSF —referred
to as HSF/TD- employs Thread Director (TD) to obtain SF estimates. Because
in the Alder Lake processor we used such estimates are only accessible directly
when the thread runs on a big core (i.e., a valid TD class is not reported from
E-cores [31]), our implementation continuously stores TD-based big-core SF es-
timates on a per-thread history table for different program phases, making it
possible to obtain SF predictions indirectly from small cores by accessing the
history table. The utilization of history tables to observe patterns from previous
samples and predict current and future performance has been widely explored
by previous work [39JI0]. To deal with frequent phase misses when accessing
the history table from small cores, our implementation triggers migrations to
big cores to gather new big-core estimates, and also implements a throttling

Rapid development of OS support with PMCSched for scheduling on AMPs 9

AR a1 oXl B, & B0 Bl
N le ool o oreehd it Re MO o 11 00 o 6wl o8 NN WL 6 0P 282 ol ®
R aeineeon 0 et WO (0 el Rt N0 e e a1 1 RO (k1 AT SR O8N PO rT R A0 1 i) oS
a‘é\'b*t‘s\e(\v“‘%“"%ﬂ?%"”d\éﬁd\é’b\oé@“\éea\gee%*c“;o@%a‘oge«;‘)&\‘O«x\@ex\““?ﬁ@%“\?ﬁ“\\\e°\?09\\\9\““%\&%\&0@}\3‘(\(@‘00‘““2""eg9‘%0‘\%@"90“‘\0‘(\2\2‘\%0"\29‘\%‘\\?&“‘Q«‘\\{@%ﬂﬂ"%

1 I
5 -
14 I |

- |

[} | _
% - = - =
! | - =_
1 | |
11 . rz . L w_
1 — : |
; = -z - -
19 _ .] |
201 - ol

Low-SF medium-SF M high-SF
Fig. 2. Workloads used for our experiments. Each row M; depicts the composition of
the i-th workload. A blank cell indicates that the associated program is not included in
the workload. Applications whose average SF is lower than 1.7 are considered low-SF
programs in our platform, and those with an SF value greater than 2.05 are classified
as high-SF. The remaining ones are labeled as medium-SF.

[AARR [EE HSF/TD E= HSF/B [HSF/BS [od Linux-best HEE Linux-worst

&
S

Normalized throughput

000000 - ———aaa

CPOPOPSTOTOG

B TS SIIN

Fig. 3. Normalized throughput delivered by the various scheduling algorithms

mechanism to limit the number of profiling-related migrations, as in [10]. In the
second HSF variant, denoted as HSF/BS, the OS continuously gathers a number
of per-thread PMC metrics; an up-to-date SF prediction is obtained for a thread
by using the metric values as input to the core-specific models proposed in [31]
for the big and the small core (the model to use depends on the thread’s current
core type). Lastly, under the HSF/B variant, SF predictions on big cores are
obtained via the same big-core model used by HSP/BS; however, on the small
core, predictions are obtained indirectly by reading a history table, populated
with past SF estimates retrieved on the big core. Note that this variant was
implemented to conduct a fairer comparison with HSF/TD, where direct SF
predictions on the small core are unavailable.

Experiments and discussion. For our experiments we randomly generate 20
diverse workloads, comprising of 16 single-threaded programs each. The compo-
sition of the various program mixes (M) is depicted in Fig. [2| and covers 46
different SPEC CPU applications in total. In launching each program mix, we
follow a similar procedure to that of previous works [3J34], so as to ensure the
machine’s load is constant throughout the experiment. All applications in the
workload are started simultaneously, and when one of them completes, the pro-
gram is restarted repeatedly until the slowest application completes three times.
We use the geometric mean of the completion times for each program to calculate
the degree of throughput, by using the Aggregate Speedup metric [34T0J3T]. All

10 C. Bilbao et al.

programs were compiled with GCC 11.2 with the -03 and -mtune=alderlake
compiler switches.

Fig. [B|shows the normalized throughput for the various scheduling algorithms
relative to AARR. As a reference, we also provide the best and worst results ob-
tained by Linux default scheduler (CFS) across 10 runs of each experiment, re-
ferred to as Linux-best and Linux-worst, respectively. This scheduler is designed
to minimize the number of thread migrations, but it is still largely asymmetry
unaware [10], and provides highly variable completion times for the same applica-
tion across multiple runs of the same experiment on Intel Alder Lake processors.
Essentially CFS may map an application to a big core for a certain run, and
then to a small core in another run, irrespective of its co-runners. This causes
large throughput differences across runs, making CFS a misleading baseline [10].

These experimental results undoubtedly reveal that HSP/BS outperforms
the other schedulers for most workloads, achieving up to a 30% throughput gain
w.r.t. AARR, and providing a 22.9% average improvement against the TD vari-
ant. These numbers are tightly related to the superior SF-estimation accuracy
provided by the PMC-based models for the big and small core, relative to that
of Thread Director, as shown in [3I]. Overall, a higher SF-prediction accuracy
allows HSF to identify programs with a truly high SF better, and, as a result,
the scheduler can grant more big-core cycles to them than to other threads. We
further observe that using the big-core model in combination with the history
table (HSF/B variant), provides substantially better throughout figures than
HSP/TD (averaging 7.9% improvement). However, in a few workloads, such as
M10 and M20, HSF/B fails to yield comparable performance to that of AARR.
We found that this is caused by the extra thread migrations (and hence the
overheads), triggered in response to frequent table phase misses, and aimed at
refreshing the history table on big cores. Despite this fact, we conclude that the
PMC-based big-core model alone provides superior accuracy than TD, and that
the per-thread history table constitutes a reasonably effective method to deal
with scenarios where direct SF estimation is not available on certain core types.

5 Conclusions and Future Work

In this paper we have presented PMCSched, a framework for Linux that enables
to implement the custom OS kernel support required by new scheduling and
resource-management policies for multicore systems. A key distinctive feature of
our framework is that it empowers developers and researchers to add new kernel-
level scheduling-related support via a loadable module that can be inserted in
vanilla (unmodified) versions of the Linux kernel. This favors the adoption in pro-
duction systems of custom, and potentially sophisticated, scheduling strategies
implemented at one or multiple levels of the system software stack. To demon-
strate the flexibility of the framework, we leveraged PMCSched’s modular plugin-
based design to implement several asymmetry-aware OS-level schedulers, and
evaluated their ability to improve system throughput under multi-application
workloads on an Intel Alder Lake (hybrid) multicore processor.

Rapid development of OS support with PMCSched for scheduling on AMPs 11

As for future work, we plan to design novel scheduling and resource man-
agement strategies to improve performance when both single-threaded and mul-
tithreaded programs are present on the system, making emphasis on potential
optimizations that come from the synergistic cooperation between the runtime
system and the OS. Lastly, we should highlight that part of the core functionality
of PMCSched is already publicly available in PMCTrack’s source code reposi-
tory [27], but that the full framework will be open sourced with the next public
release of PMCTrack, scheduled for late 2022.

Acknowledgements Work supported by the EU (FEDER), the Spanish MINECO
and CM, under grants RTT12018-093684-B-100 and S2018/TCS-4423.

References

1. AMD: AMD64 Technology Platform QoS Extensions. https://developer.amd.co
m/wp-content /resources,/56375.pdf

2. Barbalace, A., Lyerly, R., Jelesnianski, C., Carno, A., Chuang, H.R., Legout, V.,
Ravindran, B.: Breaking the boundaries in heterogeneous-ISA datacenters. In:
ACM SIGPLAN Notices. vol. 52, pp. 645-659. ACM (2017)

3. Blagodurov, S., et al.: A case for NUMA-aware contention management on multi-
core systems. In: Proceedings of USENIX ATC ’11. USA (2011)

4. Calandrino, J.M., et al.: LITMUS-RT : A Testbed for Empirically Comparing
Real-Time Multiprocessor Schedulers. In: 2006 27th IEEE Int’l Real-Time Systems
Symposium (RTSS’06). pp. 111-126 (2006)

5. Chronaki, K., et al.: Criticality-aware dynamic task scheduling for heterogeneous
architectures. In: Proceedings of the 29th ACM on Int’l Conference on Supercom-
puting. pp. 329-338. ICS 2015 (2015)

6. Chronaki, K., et al.: On the maturity of parallel applications for asymmetric multi-
core processors. J. Par. Distrib. Comput. 127, 105-115 (2019)

7. Costero, L., et al.: Energy efficiency optimization of task-parallel codes on asym-
metric architectures. In: Proc. of HPCS ’17. pp. 402-409 (jul 2017)

8. Dongarra, J.: Report on the sunway taihulight system. Tech Report University of
Tennessee: UT-EECS-16-742 (2016)

9. Feliu, J., et al.: Perf&fair: A progress-aware scheduler to enhance performance and
fairness in smt multicores. IEEE Trans. Comput. 66(5), 905-911 (May 2017)

10. Garcia-Garcia, A., et al.: Contention-aware fair scheduling for asymmetric single-
ISA multicore systems. IEEE Transactions on Computers 67(12) (Dec 2018)

11. Garcia-Garcia, A., et al.: LFOC: A lightweight fairness-oriented cache clustering
policy for commodity multicores. In: Proc. of ICPP’19. pp. 14:1-14:10 (2019)

12. Haque, M.E., et al.: Exploiting heterogeneity for tail latency and energy efficiency.
In: 50th Ann. IEEE/ACM Int’l Symp. on Microarchitecture. pp. 625-638 (2017)

13. Harris, T., Maas, M., Marathe, V.J.: Callisto: Co-scheduling parallel runtime sys-
tems. In: Proc. of 9th European Conf. on Comput. Systems. EuroSys '14 (2014)

14. Hennessy, J.L., Patterson, D.A.: A new golden age for computer architecture. Com-
mun. ACM 62(2), 4860 (Jan 2019)

15. Intel: Intel®) 64 and IA-32 Architectures Software Developer’s Manual Vol. 3:
System Programming Guide (2021)

16. Intel: Optimizing software for x86 hybrid archiecture. Intel White Paper (Oct 2021)

https://developer.amd.co

12

17.
18.

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.

29.

30.

31.

32.

33.
34.
35.
36.
37.

38.
. Xu, V.M., et al.: Lush: Lightweight framework for user-level scheduling in

C. Bilbao et al.

Intel: User space software for Intel(R) Resource Director Technology. https://
github.com/intel/intel-cmt-cat (2022)

Koufaty, D., Reddy, D., Hahn, S.: Bias Scheduling in Heterogeneous Multi-core
Architectures. In: Eurosys 10. pp. 125-138 (2010)

Kumar, R., et al.: Single-ISA Heterogeneous Multi-Core Architectures for Multi-
threaded Workload Performance. In: 31st Ann. Int’l Symp. Computer Architecture
(ISCA 04). pp. 64-75 (2004)

Lepers, B., et al.: Provable multicore schedulers with Ipanema: Application to work
conservation. In: Proc. of Eurosys '20 (2020)

Li, T., et al.: Operating system support for overlapping-ISA heterogeneous multi-
core architectures. In: Proc. of HPCA ’10. pp. 1-12 (2010)

Linux: Using the linux kernel tracepoints. https://www.kernel.org/doc/html/
latest/trace/tracepoints.html

Lozi, J.P., et al.: The linux scheduler: A decade of wasted cores. In: Proceedings of
the 11th ACM European Conference on Computer Systems (Eurosys ’16) (2016)
Lyerly, R., et al.: An OpenMP Runtime for Transparent Work Sharing Across
Cache-Incoherent Heterogeneous Nodes. ACM Trans. Comput. Syst. (dec 2021)
Mittal, S.: A survey of techniques for architecting and managing asymmetric mul-
ticore processors. ACM Comput. Surv. 48(3), 45:1-45:38 (Feb 2016)

Mvondo, D., et al.: Towards user-programmable schedulers in the operating system
kernel. In: Proceedings of the 11th Workshop on Systems for Post-Moore Archi-
tectures, SPMA 2022 (Apr 2022)

PMCTrack: Github repository. https://github.com/jcsaezal/pmctrack (2015)
Pricopi, M., et al.: Power-performance modeling on asymmetric multi-cores. In:
Proc. of CASES ’13. pp. 15:1-15:10 (2013)

Rostedt, S.: "ftrace: Where modifying a running kernel all started"
https://kernel-recipes.org/en/2019/talks/ftrace-where-modifying-a-run
ning-kernel-all-started /

Saez, J.C., Castro, F., Prieto-Matias, M.: Enabling performance portability of data-
parallel openmp applications on asymmetric multicore processors. In: 49th Int’l
Conference on Parallel Processing. ICPP 20 (2020)

Saez, J.C., Prieto-Matias, M.: Evaluation of the Intel Thread Director technology
on an Alder Lake processor. In: 13th ACM SIGOPS Asia-Pacific Workshop on
Systems (APSys ’22) (2022)

Saez, J.C., et al.: An OS-oriented performance monitoring tool for multicore sys-
tems. In: Proc. of Euro-Par 2015: Parallel Processing Workshops. pp. 697-709
(2015)

Saez, J.C., et al.: PMCTrack: Delivering performance monitoring counter support
to the OS scheduler. The Computer Journal 60(1), 60-85 (2017)

Saez, J.C., et al.: Towards completely fair scheduling on asymmetric single-ISA
multicore processors. Journal of Parallel and Distributed Computing 102 (2017)
Salami, B., et al.: Online energy-efficient fair scheduling for heterogeneous multi-
cores considering shared resource contention. J. Supercomput. 78(6) (apr 2022)
Servat, H., et al.: On the instrumentation of OpenMP and OmpSs tasking con-
structs. In: Euro-Par 2012: Parallel Processing Workshops. pp. 414-428 (2013)
Torng, C., Wang, M., Batten, C.: Asymmetry-aware work-stealing runtimes. In:
Proc. of ISCA ’16. pp. 40-52 (2016)

Weaver, V.M.: Linux perf event features and overhead. FastPath Workshop (2013)

heterogeneous multicores. In: 2021 IEEE 14th Int’l Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC). pp. 396-404 (2021)

https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://github.com/jcsaezal/pmctrack
https://kernel-recipes.org/en/2019/talks/ftrace-where-modifying-a-run

	Rapid development of OS support with PMCSched for scheduling on asymmetric multicore systems

