
LFOC: A Lightweight Fairness-Oriented Cache Clustering Policy
for Commodity Multicores

Adrian Garcia-Garcia
Complutense University of Madrid

adriagar@ucm.es

Juan Carlos Saez
Complutense University of Madrid

jcsaezal@ucm.es

Fernando Castro
Complutense University of Madrid

fcastror@ucm.es

Manuel Prieto-Matias
Complutense University of Madrid

mpmatias@ucm.es

ABSTRACT
Multicore processors constitute the main architecture choice for
modern computing systems in different market segments. Despite
their benefits, the contention that naturally appears when multi-
ple applications compete for the use of shared resources among
cores, such as the last-level cache (LLC), may lead to substantial
performance degradation. This may have a negative impact on
key system aspects such as throughput and fairness. Assigning the
various applications in the workload to separate LLC partitions
with possibly different sizes, has been proven effective to mitigate
shared-resource contention effects.

In this article we propose LFOC, a clustering-based cache par-
titioning scheme that strives to deliver fairness while providing
acceptable system throughput. LFOC leverages the Intel Cache Al-
location Technology (CAT), which enables the system software to
divide the LLC into different partitions. To accomplish its goals,
LFOC tries to mimic the behavior of the optimal cache-clustering
solution, which we could approximate by means of a simulator in
different scenarios. To this end, LFOC effectively separates stream-
ing aggressor programs from cache sensitive applications, which
are then assigned to separate cache partitions.

We implemented LFOC in the Linux kernel and evaluated it on a
real system featuring an Intel Skylake processor, where we compare
its effectiveness to that of two state-of-the-art policies that optimize
fairness and throughput, respectively. Our experimental analysis
reveals that LFOC is able to bring a higher reduction in unfairness
by leveraging a lightweight algorithm suitable for adoption in a
real OS.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
• Software and its engineering→ Scheduling.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’19, August 05–08, 2019, Kioto, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Multicore processors, cache partitioning, clustering, fairness, Intel
Cache Allocation Technology, Linux kernel.

ACM Reference Format:
Adrian Garcia-Garcia, Juan Carlos Saez, Fernando Castro, andManuel Prieto-
Matias. 2019. LFOC: A Lightweight Fairness-Oriented Cache Clustering
Policy for Commodity Multicores. In Proceedings of ICPP ’19: International
Conference on Parallel Processing (ICPP ’19). ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Today, chip multicore processors (CMPs) constitute the dominant
architecture choice for modern general-purpose computing systems
and will likely continue to be dominant in the near future. Despite
their benefits, these processors pose a number of challenges to the
system software. One of the biggest challenges is how to mitigate
the effects that come from contention on shared resources [35].
Contention occurs due to the fact that cores in a CMP are not
truly independent processing units but instead typically share a
last-level cache (LLC) and other memory-related resources with
the remaining cores, such as a DRAM controller and a memory
bus or interconnection network [2, 8]. Applications running simul-
taneously on the various cores may compete with each other for
these shared resources, which could degrade their performance
unevenly [8, 23].

Partitioning of the shared LLC (i.e., assigning a separate cache
partition with a certain size to each application in a workload) has
been proven effective to mitigate shared-resource contention ef-
fects [3, 14, 16, 19, 23, 30]. Recently, cache-partitioning hardware
support has been adopted in commodity Intel processors via the
Intel Cache Allocation Technology (CAT) [18], which enables the
system software to assign a certain number of cache ways to each
application. Several resource management schemes that leverage
this technology have been recently proposed to accomplish different
objectives such as system throughput optimization [3], delivering
fairness [23], or to improve client satisfaction in virtual environ-
ments [7].

Our work primarily explores how to leverage Intel CAT, at the OS
level, to deliver system-wide fairness, which contributes to reducing
a number of undesirable effects on the system. For example, shared-
resource contention may cause an application’s completion time to
differ significantly across executions, depending on its co-runners
in the workload [6, 35]. Moreover, equal-priority applications may

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICPP ’19, August 05–08, 2019, Kioto, Japan Garcia-Garcia, et al.

not experience the same performance degradation when running to-
gether relative to the performance observed when each application
runs alone on the CMP [2, 17]. These issues make priority-based
scheduling policies ineffective [2], reduce performance predictabil-
ity [32] and may lead to wrong billings in commercial cloud-like
computing services [6], where users are charged for CPU hours.
Notably, unfairness also leads to uneven progress of the various
threads in HPC multithreaded applications [26], which seriously
limits scalability.

To deliver fairness while providing acceptable system through-
put, we propose LFOC, a Lightweight Fairness-Oriented Cache-
clustering OS-level scheme. By using Intel CAT hardware support,
LFOC dynamically creates a number of last-level-cache partitions
(clusters) according to the features of the workload, and maps ap-
plications to different clusters based on their degree of cache sensi-
tivity and contentiousness.

The main contributions of our work are as follows:

• In order to guide the design of LFOC, we approximated –by
means of a parallel simulator– the solution to the cache-
clustering problem that optimizes fairness for different work-
load scenarios. The exhaustive analysis of the optimal solu-
tion reveals that the key to enforce fairness lies in identifying
contentious cache-insensitive (aka streaming) applications
and confine them to a reduced set of small cache partitions,
so as to devote the vast majority of space in the LLC to
cache-sensitive applications.
• Based on the insights provided by the previous analysis, we
proceeded to design LFOC, which attempts to approximate
the cache clustering enforced by the optimal solution. Our ap-
proach continuously monitors applications’ runtime metrics
with hardware performance counters and classifies applica-
tions into different categories based on cache behavior. The
collected performance information is used as input to an
efficient clustering algorithm. LFOC leverages a lightweight
online mechanism to approximate the degree of cache sensi-
tivity of an application that avoids costly periodicmonitoring
operations (i.e. measuring application performance for dif-
ferent cache sizes at runtime) used by other approaches [3],
whenever possible.
• We implemented LFOC in the Linux kernel and evaluated
it on a real system featuring an Intel Skylake processor. In
our experiments, we compare its effectiveness to that of
two previously proposed policies –Dunn [23] and KPart[3]–,
which optimize fairness and throughput, respectively. Our
analysis reveals that LFOC is able to deliver up to a 20.5%
reduction in unfairness (9% on average) relative to Dunn
(fairness-oriented clustering), and delivers higher through-
put and fairness than every analyzed scheme for the vast
majority of the workload scenarios considered.

The remainder of the paper is organized as follows. Section 2
presents background on cache partitioning and also discusses re-
lated work. Section 3 presents the analysis of the optimal solution
that motivates our proposal. Section 4 outlines the design and inner
workings of LFOC. Section 5 covers the experimental evaluation,
and Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
In this section we first describe the metrics we considered to assess
the degree of fairness and throughput provided by cache partition-
ing strategies. Then, we formally introduce the notion of cache
partitioning and cache clustering and present some related issues.
Finally, we discuss related work.

2.1 Metrics
To measure the performance degradation of an individual applica-
tion in a multi-program workload we consider the Slowdownmetric,
defined as follows:

Slowdownapp =
CTpart,app
CTalone,app

(1)

whereCTpart,app denotes the completion time of application app
when it runs sharing the system under a given cache-partitioning
scheme, and CTalone,app is the completion time of the application
when running alone on the CMP system.

The slowdown of a single-threaded application can be also de-
fined in terms of the average number of instructions per cycle ob-
servedwhen it runs alonewith all cache space available (IPCalone,app)
and that achieved when it runs with other applications in the work-
load under a certain cache-partitioning scheme (IPCpart,app):

Slowdownapp = IPCalone,app/IPCpart,app (2)

Previous research on fairness for multicore systems [2, 23] de-
fines a scheme as fair if equal-priority applications in a workload
suffer the same slowdown as a result of sharing the system. To
cope with this notion of fairness, we employ the unfairness metric,
which has been extensively used in previous work [2, 8, 20, 28]. For
a workload consisting of n applications, this metric (lower-is-better)
is defined as follows:

Unfairness = MAX(Slowdown1, ...,Slowdownn)
MIN(Slowdown1, ...,Slowdownn)

(3)

Notably, according to the definition of the unfairness metric, we
could improve its value just by slowing down certain applications to
achieve similar but potentially high slowdown figures. Clearly, this
is unacceptable, as it could come at the expense of high throughput
degradation, which our proposal also tries to reduce. Therefore, the
value of the unfairness metric must be always reported along with
system throughput figures, as we do in this article. Specifically, to
quantify throughput, we used the System ThroughPut (STP) met-
ric [5, 23], –also referred to as Weighted Speedup in [3]–, defined
as follows:

STP =
n∑
i=1

(
CTpar t,i
CTalone,i

)
=

n∑
i=1

(
1

Slowdowni

)
(4)

2.2 Cache partitioning vs. Cache clustering
Two major strategies exist to distribute cache space among ap-
plications in a shared LLC that supports way-partitioning: cache
partitioning and cache clustering.

Cache-partitioning entails assigning a separate cache partition
with a certain size (a specific number of ways) to each application
in a workload. Let A be a workload consisting of n applications
{a1,a2, · · · ,an } and let S be a system that features ak-way last-level

LFOC: A Lightweight Fairness-Oriented Cache Clustering Policy for Commodity Multicores ICPP ’19, August 05–08, 2019, Kioto, Japan

cache with k ≥ n. A feasible cache partitioning of the LLC for A on
S is formally defined as a set {w1,w2, · · · ,wn } (with

∑n
i=1wi = k)

wherewi denotes the number of ways assigned to application ai
(1 ≤ wi ≤ k − n + 1).

In recent years, many cache-partitioning proposals [1, 14, 19, 30]
have been proposed to target different optimization objectives,
such as maximizing throughput, reducing energy consumption or
improving fairness. These proposals are equipped with heuristic
approximate algorithms specifically tailored to the target objective
they pursue. In general, determining the solution to the optimal
cache partitioning problem for a certain optimization objective is
known to be NP-hard [14], so determining the best solution via
an extensive exploration of the (vast) search space is largely im-
practical. For example, determining the optimal cache-partitioning
solution for an 8-application workload (n = 8) on a platform with
an 11-way LLC, requires the exploration of 120 solutions; the num-
ber of possible options to consider for the same workload size on a
20-way platform rises up to more than 50K.

When the number of applications exceeds the number of cache
ways to share (n > k), partitioning the LLC is unfeasible. Two or
more applications must share at least one cache way. Previous work
has pointed out that even when n ≤ k , the coarse granularity of
partitions (in the order of MBs) available in modern processors
featuring Intel CAT hardware extensions makes strict cache parti-
tioning (no way sharing among applications) inappropriate in some
cases [3, 23]. Due to the finer grained cache distribution that natu-
rally results from sharing a set of cache ways between two or more
applications, we may observe better performance (and sometimes
better fairness) when allowing shared ways among applications
(aka. Cache Clustering) than by means of way partitioning [1, 3].

Formally, we define a Cache Clustering as follows. Let A be a
workload consisting of n applications {a1,a2, · · · ,an }, and let S
be a system that features a k-way shared cache. A cache cluster-
ing for A on S is defined as the set T = {C1,C2, · · · ,Cm } and
the associated set W of assigned ways for each Ci in T , W =

{w1,w2, · · · ,wm } where each Ci is a disjoint subset of A (Ci ⊆ A),
subject to the following restrictions (i) 1 ≤ m ≤ min(n,k), (ii)
C1 ∪C2 ∪ · · · ∪Cm = A, (iii) ∀i, j, 1 ≤ i, j ≤ m ∧ j > i,Ci ∩Cj = ∅

and (iv)
(
1 ≤ w j ≤ k −m + 1

)
∧

∑m
i=1wi = k . For simplicity, we

will refer to each item in T as a cluster (i.e., group of applications).
According to the earlier definition, each cluster has a certain num-
ber of cache ways assigned to it, as indicated by theW set (e.g. C1
hasw1 ways assigned to it), which constitutes one of the possible
ways to distribute the available cache ways across clusters.

As in the case of the cache partitioning, several cache clustering
approaches have been recently proposed [3, 7, 23] to pursue differ-
ent optimization objectives by means of approximate algorithms.
Notably, by considering the size of the search space, finding the
optimal cache clustering solution for a certain objective constitutes
even a harder problem to solve compared to optimal cache parti-
tioning. Specifically, to determine the optimal solution via extensive
exploration of the search space in the former case, for every possible
clustering of the A set –with min(n,k) items at the most–, we have
to determine the distribution of ways among clusters that optimizes
a given objective. It is worth noting that the number of possible
solutions grows exponentially with n and k . So, for example, on

a system featuring a 20-way LLC the number of different cache
clustering options for an 8-application workload is roughly 9M,
whereas for an 11-application workload more than 5000M possible
solutions exist.

2.3 Related Work
Many researchers have attempted to mitigate the contention prob-
lem in the LLC via software and hardware techniques [3, 12, 14,
21, 23, 34, 36]. A large body of work has addressed this problem
via cache-partitioning or cache-clustering approaches equipped
with approximate algorithms [3, 16, 19, 30]. A recent survey [14]
discusses the most effective solutions available to target various
optimization objectives.

Cache partitions can be created on systems with specific hard-
ware support (such as Intel CAT) or by means of software-based
solutions, most of which rely on page-coloring [22, 24, 29, 33]. Page-
coloring can be applied to off-the-shelf multicore platforms [31],
but is known to be subject to a number of limitations, which can
be overcome with hardware-based cache partitioning support [23].
Among the different hardware alternatives, the main differences es-
sentially lie on how to manage the number of ways for the different
applications: some proposals are based on the cache replacement
policy [11, 13, 27] while others use set sampling and duplicate cache
tags to guide cache partitioning [19, 25]. In this work we propose
an OS-level (also extensible to the virtual machine monitor) cache-
clustering scheme that leverages hardware-based way-partitioning.

In the remainder of this section we discuss the cache-partitioning
and cache-clustering policies closer to our LFOC approach.

2.3.1 Cache partitioning proposals. UCP [19] is a cache-partitioning
scheme that aims to improve system throughput by minimizing the
total number of misses incurred by all applications in the workload
on the shared last-level cache. UCP does not attempt to determine
the optimal solution but instead employs an approximate algorithm
referred to as lookahead [19], which uses as input the MPKI ta-
ble of each application. This table stores the application’s MPKI
(LLC Misses Per 1K Instructions) value for any possible cache size
(i.e., number of assigned cache ways under way-partitioning). In
the original proposal [19], UCP relies on hardware extensions to
determine per-application MPKI tables at runtime. Unfortunately,
more than a decade later of the original proposal, these hardware
extensions have not yet been adopted in commercial platforms. Our
LFOC approach relies on the lookahead algorithm to distribute the
vast majority of the space in the LLC among cache-sensitive applica-
tions, by using the per-application slowdown tables (i.e., slowdown
for different number of ways relative to using the total way count)
as input to the algorithm instead of MPKI tables; this is known
to provide a fairer cache distribution [9]. The cache-partitioning
algorithm proposed by Yu and Petrov [30] strives to reduce sys-
tem bandwidth pressure. To this end, it partitions the LLC so as
to minimize the total bandwidth. In doing so, the algorithm relies
on bandwidth consumption measurements with different cache
sizes gathered offline for the various applications. Note that in our
evaluation we just consider those partitioning approaches that do
not require offline collected data to function.

ICPP ’19, August 05–08, 2019, Kioto, Japan Garcia-Garcia, et al.

2.3.2 Cache clustering proposals. More recently, different cache-
clustering algorithms have been proposed [3, 23] as an alternative
to strict cache-partitioning. The KPart [3] scheme constitutes a
cache clustering approach specifically designed for throughput op-
timization. KPart implements an iterative algorithm that creates
and merges application clusters via hierarchical clustering. To de-
cide which clusters must be merged in each iteration of the loop,
and how to distribute the available ways among clusters (inter-
cluster way-partitioning), the scheme leverages the distance metric
proposed in [16] as well as UCP’s lookahead algorithm [19]. The
application of lookahead and the evaluation of the distance metric
relies on the ability to determine MPKI tables and IPC tables (i.e.
number of Instructions Per Cycle for different cache sizes) online for
each application. As explained in Sec. 4, LFOC requires to gather a
smaller amount of performance information than KPart, and avoids
to perform costly cache way sweeps periodically, thus effectively
reducing the overhead.

In [23], Selfa et al. propose the Dunn cache-partitioning policy,
designed to improve fairness. This approach groups applications
into clusters by applying the k-means clustering algorithm [10],
and using the fraction of core stalls caused by L2 cache misses in-
curred by the applications as the metric to guide clustering. (In our
experimental platform this information can be obtained with the
STALLS_L2_MISS performance counter event.) We should highlight
that, according to the definition provided in Sec. 2.2, this strat-
egy does not strictly constitute a pure cache-clustering approach,
since the cache partitions it creates may overlap with each other.
This overlapping can create unpredictable interactions between
applications that belong to different clusters [3].

In our experimental evaluation, we compare the effectiveness
of our proposal (LFOC) to the Dunn and KPart approaches, and
demonstrate that LFOC delivers higher reductions in unfairness
than these approaches across the board. We should also highlight
that Dunn and KPart are user-level clustering solutions, as opposed
to our approach, implemented in the OS. User-levels solutions like
these may incur higher overheads since they make extensive use
of system calls to access privileged resources such as performance
monitoring hardware and cache partitioning facilities, which are
handled directly by the OS. LFOC by contrast accesses these facili-
ties directly by using a lightweight kernel-level API.

3 ANALYSIS OF THE OPTIMAL
CACHE-CLUSTERING SOLUTION

As stated earlier, the design of our approach is inspired by the
behavior of the optimal cache-clustering solution that optimizes
fairness. In this section we provide an analysis on the optimal solu-
tion, which we could approximate for different workloads scenarios
by using the PBBCache [9] simulator. This simulation tool relies
on offline-collected application performance data obtained for dif-
ferent cache sizes (e.g., instructions per cycle, memory bandwidth
consumption, etc.) to determine the degree of throughput, fair-
ness and other relevant metrics for a workload under a particular
partitioning algorithm on a given platform. A key feature of the
PBBCache simulator is its ability to determine the optimal cache-
partitioning and optimal cache-clustering solutions for different

Table 1: Classification of applications based on cache behavior

Type Criterion

Streaming (Slowdown ≤ 1.03 and LLCMPKC ≥ 10)
in at least one way assignment, and
Slowdown < 1.06 in all way assignments

Sensitive If not streaming and Slowdown ≥ 1.05
for a number of ways ≥ 2

Light sharing Not streaming and not sensitive

optimizations objectives (e.g. throughput or fairness) using a paral-
lel branch-and-bound algorithm. In approximating the application
slowdown, which is necessary to determine the degree of fairness,
PBBCache accounts for the performance degradation due to both
cache sharing and memory-bandwidth contention (to this end it
uses a variant of the probabilistic model proposed in [15]).

To carry out our analysis with the simulator, we used perfor-
mance counters to gather the average value of different runtime
metrics with varying cache sizes for applications from the SPEC
CPU2006 and CPU2017 suites running alone on a real system featur-
ing an Intel Skylake processor with an 11-way 27.5MB LLC. (More
information on this platform can be found in Sec. 5.) The offline-
collected metric values, which correspond to the execution of the
first 1500 billion instructions of the aforementioned benchmarks,
are used as input to the simulator. This information is used to ap-
proximate the optimal clustering solution for fairness, namely, the
solution to the optimal cache-clustering problem that obtains the
optimal (minimal) unfairness value for the maximum throughput
(STP) attainable.

For our experiments we considered randomly-generated mul-
tiprogram workloads including different number of SPEC CPU
applications (from 4 to 16). According to the performance data
collected offline we classify applications into three classes based
on their degree of cache sensitivity and contentiousness: Cache-
sensitive, light sharing and streaming programs. At high level, the
cache-sensitive category is used for those programs that experi-
ence high performance drops as we reduce the number of cache
ways allotted to them; this is not the case for light sharing and
streaming applications. Streaming programs are characterized by
exhibiting a low slowdown for almost all ways allocations, while
incurring a high number of LLC misses per cycle. Applications
of this kind are cache insensitive, and typically act as aggressor
programs to cache-sensitive applications co-located on the same
cache cluster, as the performance of the latter can be degraded sub-
stantially. Light-sharing programs are neither cache sensitive nor
aggressive to others (the working set typically fits in the per-core
private cache levels). Table 1 summarizes the criteria we followed
to make this classification on our experimental platform, which is
based on two offline-collected metrics: the application slowdown
–relative performance with respect to using the entire LLC space–
and the number of LLC Misses Per Kilo Cycles (LLCMPKC). As an
example that illustrates the differences in the behavior between a
streaming benchmark (lbm) and a cache-sensitive one (xalancbmk),
Fig .1 shows how the slowdown and the LLCMPKC varies with the
amount of ways allocated to each application.

LFOC: A Lightweight Fairness-Oriented Cache Clustering Policy for Commodity Multicores ICPP ’19, August 05–08, 2019, Kioto, Japan

1 3 5 7 9 11
Number of ways

1.0

1.2

1.4

1.6

1.8
Sl

ow
do

wn

0

10

20

30

40

50

LL
C

m
iss

es
 p

er
 1

k.
 c

yc
le

slbm-Slowdown
lbm-LLCMPKC
xalancbmk-Slowdown
xalancbmk-LLCMPKC

Figure 1: Slowdown and LLCMPKC for different way counts

After a thorough analysis of the optimal cache-clustering and
optimal cache-partitioning solutions provided by the simulator for
the various workloads, we draw the following major insights:
• In most cases, the cache-clustering solution that optimizes
fairness isolates all streaming applications in a reduced set
of ways (no greater than 2 in any workload). In many sce-
narios, a single 1-way cluster is used to confine all streaming
programs.
• This same solution maps light-sharing programs onto dif-
ferent clusters following a hardly predictable pattern. More
importantly, by conducting additional analysis with the sim-
ulator, we observed that moving individual light-sharing
applications to different clusters has very little impact on
throughput and fairness.
• As expected, by catering to the definition of the unfairness
metric, the amount of ways assigned to cache-sensitive ap-
plications is critical for both throughput and fairness. Recall
that the unfairness metric factors in the maximum slowdown
observed across applications in the workload, and sensitive
benchmarks typically incur a very high performance degra-
dation if their cache size requirements are not fulfilled.
• The benefit that comes from assigning separate cache parti-
tions (even optimally) to individual applications decreases
dramatically as the number of applications gets closer to
the number of cache ways. As an illustrative example, Fig. 3
shows the average unfairness delivered by the optimal par-
titioning solution, normalized to that of the optimal clus-
tering solution for different workload sizes. As observed,
optimal cache-partitioning suffers from increased unfairness
as the workload size grows. When the application count
matches the number of ways, each application can be as-
signed only one way under strict cache-partitioning -this is
the only feasible option-, which gives rise to high unfairness
in most workloads. Our overarching conclusion is that cache-
clustering policies are clearly superior to cache-partitioning
approaches as the ratio of the number of ways to the number
of applications decreases.

To further illustrate the general behavior of the optimal cluster-
ing solution, Fig. 2 reports the average application count per cluster
size, as well as the total number of clusters –grouped by its size
(in ways)– that the solution builds for a subset of the workloads
we explored: 20 randomly selected program mixes made up of 10
applications each. The data reported in the figure confirms the first
three aforementioned observations. First, streaming applications

1 2 3 4 5 6 7 9 10
Cluster size (ways)

0

1

2

3

4

5

Av
er

ag
e

ap
pl

ica
tio

n
co

un
t Light

Streaming
Sensitive

0

5

10

15

20

25

Cl
us

te
r c

ou
nt

Cluster count

Figure 2: Cluster count and breakdown of applications into the different cat-
egories for each cluster size.

Figure 3: Comparison of optimal clustering vs optimal partitioning.

are typically confined in clusters with just one way allocated to
them. In relative numbers, more than 87% of streaming application
instances are assigned to this kind of clusters, while the remaining
ones are allocated to 2-way clusters. Second, we can observe that
light sharing applications are mapped to clusters with very different
size; however, the vast majority of these programs are mapped to
1-way clusters. Third, the results reveal that cache-sensitive appli-
cations are predominantly present in big cache clusters. Specifically,
more than 77% of the sensitive application instances are assigned to
clusters with 4 or more ways. Finally, as is evident, 1-way clusters
with a high number of applications are often present in the optimal
solutions for the various workloads.

4 DESIGN AND IMPLEMENTATION
In this section we begin by describing how our clustering algorithm
works at a high level. Then we proceed to indicate how applica-
tions are classified at runtime by leveraging data from hardware
performance monitoring counters.

4.1 Algorithm outline
LFOC has been implemented on Linux as an extension of the OS
scheduler. Specifically, it has been bundled in a loadable kernel
module as a monitoring plugin of the PMCTrack tool [20]. This tool
provides a kernel-level API to access privileged hardware facilities
such as performance monitoring counters (PMCs) and Intel CAT
features (i.e., HW support for cache way partitioning).

LFOC classifies applications at runtime into three classes based
on its cache behavior –light sharing, streaming and sensitive– and
assigns each application to a certain cache partition whose size is
determined dynamically based on the properties of the workload.

When an application enters the system its cache behavior is
unknown. To this end, a special unknown class is assigned to the

ICPP ’19, August 05–08, 2019, Kioto, Japan Garcia-Garcia, et al.

Algorithm 1: Cache-clustering algorithm used by LFOC
Input: ST , CS , and LS represent the sets of streaming,

cache-sensitive and light-sharing applications,
respectively;max_streaminд_way and
дaps_per_streaminд are configurable parameters of
LFOC (default value 5 and 3, respectively), nr_ways is
the number of ways of the LLC.

function LFOC_partitioning(ST ,CS ,LS ,nr_ways):
Clusters ← ∅;
ways_f or_streaminд← |ST |/max_streaminд_way;
for i ← 1 toways_f or_streaminд do

Add a new 1-way cluster C to Clusters;
Map up tomax_streaminд_way apps from ST to C;
Remove assigned apps from ST ;

end
{ Use slowdown tables of CS apps. as input to lookahead }
W ← lookahead(CS,nr_ways −ways_f or_streaminд);
for i ← 1 to |CS | do

Add a new cluster C withW [i] ways to Clusters;
Map application i in CS to C;

end
idx ← 0;
while |LS | > 0 and idx < ways_f or_streaminд do

TarдetC ← Clusters[idx]
дaps_available ←max_streaminд_way −
|TarдetC | ∗ дaps_per_streaminд;

if дaps_available > 0 then
Map up to дaps_available apps from LS to
TarдetC;
Remove assigned apps from LS ;

end
end
Distribute remaining applications in LS in a round-robin
fashion among non-streaming clusters;

return Clusters

application right after being spawned. At the beginning of the
execution, each thread has to go through a warm-up period (3
sampling intervals in our experimental setting). Any performance
information gathered with hardware counters during the warm-
up period is not used to classify applications, so as to mitigate
mispredictions associated with cold-start effects (e.g. the number
of cache misses typically spikes intermittently at the beginning of
the execution).

Periodically, our scheduler extension activates the partitioning
scheme depicted in Algorithm 1, which relies on the conclusions of
the analysis presented in Sec. 3. Overall, the algorithm reserves up to
two cache ways to map streaming programs. The remaining cache
ways are distributed among cache sensitive applications, which are
then assigned to separate cache partitions. The size of these parti-
tions is determined bymeans the lookahead algorithm [19], using as
input the slowdown curve for each application (i.e., slowdown reg-
istered for different cache ways) built by using IPC values obtained
online. With this cache-way distribution for cache-sensitive appli-
cations, LFOC attempts to fulfill their cache requirements based on
the degree of cache sensitivity. Finally, light sharing applications
are distributed among the various partitions, by attempting to pop-
ulate partitions with streaming applications first, as the optimal
solution typically does.

4.2 Application Classification
Once the warm-up period has elapsed for a particular application,
LFOC enters a sampling mode whose goal is to determine the ap-
plication class based on its performance sensitivity to the amount
of space assigned in the LLC. This is crucial to decide on the share
of the total cache space to be alloted to the application, as well
as to determine what co-runners in the workload (if any) must be
assigned to the same cache partition [14].

The sampling mode is inspired by the technique proposed in [3],
which operates as follows. Two non-overlapping complementary
cache partitions covering the entire LLC space are created; the first
one, referred to as the sampling partition, is reserved for the appli-
cation that triggered the transition into sampling mode, and the
other one is devoted to the remaining applications. To determine
the application class –based on the classification criteria presented
in Sec. 3– the value of various hardware events (i.e., number of in-
structions retired, cycles and LLC misses) is gathered with PMCs as
we increase the size of the sampling partition. Notably, for sensitive
applications we also obtain the slowdown curve, which is required
to create partitions for these applications, as depicted in Algorithm
1. Once the sampling process terminates, LFOC transitions back
into the normal operating mode described earlier.

In the original approach [3], the size of the first partition is var-
ied from 1 to the number of ways minus one, whereas the space of
the second cache partition (complementary) decreases accordingly.
This full sweep is required by the dynamic version of the KPart
clustering algorithm [3], which relies on the ability to accurately
determine the number of Instructions Per Cycle (IPC) and the num-
ber of LLC Misses Per Kilo Instructions (LLCMPKI) for each way
count and for every application in the workload. We observed that
this approach introduces substantial overheads due to the fact that
the cache assignment enforced during the sampling mode is typi-
cally suboptimal. The sampling application receives a progressively
higher amount of cache space, while the remaining applications
share a increasingly smaller cache cluster. This usually leads to
performance/fairness degradation especially when cache sensitive
applications and streaming programs are included in the workload.

To overcome these shortcomings, LFOC immediately puts a stop
to the sampling process in scenarios where increasing the size of
the sampling partition further provides no additional information
to the clustering algorithm. Firstly, when LLC miss rate falls below
a certain low threshold, performance does not increase much when
allotting more cache space to the application, so we expect IPC
values –used to construct slowdown tables– to remain very close
beyond that point. Secondly, streaming applications typically ex-
hibit a very low increase in performance when granting more cache
space to them. In these scenarios, LFOC interrupts the sampling
process and proceeds to determine the application class. In practice,
to successfully identify many streaming and light sharing applica-
tions –for which slowdown curves are not needed for clustering–
only a few way counts for the sampling partition must be explored.
When the application class is sensitive and the sampling process
was canceled (due to the first criterion), LFOC uses the last IPC
sample gathered to approximate the performance with higher ways
counts, which is necessary to build the entire slowdown table.

LFOC: A Lightweight Fairness-Oriented Cache Clustering Policy for Commodity Multicores ICPP ’19, August 05–08, 2019, Kioto, Japan

Figure 4: LLCMPKC captured at the beginning of the execution of fotonik3d.

Because an application may exhibit different program phases at
runtime, the initial classification may not be representative through-
out the execution. For example, Fig. 4 shows the LLCMPKC of the
streaming fotonik3d application over time, where a short light-
sharing phase precedes the streaming behavior that the program
exhibits for the vast majority of the execution. Failing to deter-
mine application classes accurately could lead to suboptimal cache-
partitioning for certain time periods, and hence to unfairness. Trig-
gering the sampling mode periodically helps to mitigate this issue,
but, unfortunately, it backfires by introducing substantial overheads.
To determine application classes at runtime in a lightweight manner,
LFOC triggers a transition into the sampling mode only in the event
that the application class has likely changed. To this end, the OS con-
tinuously monitors for each application the value of the LLCMPKC
metric and the fraction of pipeline stall cycles incurred due to long-
latency memory accesses (approximated via the STALLS_L2_MISS
performance counter event, also used in [23]), and leverages a few
heuristics to capture class changes. In particular, a class change
is signaled for a light sharing application if it enters a memory-
intensive phase, namely, the average LLCMPKC measured over the
last five monitoring periods exceeds a high_threshold (10 in our
experimental setting, as reported in Table 1 for streaming-like be-
havior) or the average fraction of long-latency memory-access stalls
is greater than 25%. This approach filters out spikes in the afore-
mentioned metrics while effectively identifying memory-intensive
phases. Conversely, for streaming programs, which LFOC typically
assigns to cache clusters consisting of one way, the sampling mode
is engaged if its average LLCMPKC falls below a low_threshold
(defined as 30% of high_threshold). Finally, for sensitive applica-
tions, LFOC associates a critical size, defined as the amount of cache
space where the slowdown falls below 1.05. The critical size is deter-
mined during the last sampling period triggered by the application.
Essentially, a class change is signaled for sensitive applications
when they enter a stable non-memory intensive phase (inverse of
the criterion presented earlier for light-sharing applications) for ef-
fective cache allocations1 smaller than the critical size, or when the
average LLCMPKC is higher than high_threshold for an amount
of cache space bigger than the critical size.

5 EXPERIMENTS
To assess the effectiveness of our OS-level cache-clustering ap-
proach we implemented it in the Linux kernel v4.9.160. For the
experiments we used a server platform featuring a Xeon Gold 6138
“Skylake” multicore processor where cores run at 2Ghz. This proces-
sor integrates an 11-way 27.5MB last level (L3) cache that supports

1The amount of cache space used by an application is gathered by leveraging the Intel
Cache Monitoring Technology.

way-partitioning; each core features a 1.25MB L1 and a 20MB L2
caches (private levels).

On this platform we carried out a experimental comparison of
LFOC with the stock Linux kernel –it does not partition the LLC–,
and with the Dunn [23] and KPart [3] cache-partitioning policies,
specifically designed to optimize fairness and system throughput re-
spectively. To perform a fair comparison with previous approaches
we used a similar methodology as that described in the correspond-
ing articles [3, 23]. Essentially, we conduct experiments with HPC
multiprogram workloads consisting of a mix of single-threaded
benchmarks from SPEC CPU, and run each program for a fixed
number of instructions (150 billion instructions in our setting).
Specifically, we ensure that all applications in the mix are started si-
multaneously, and when one of them completes the corresponding
instructions, the program is restarted repeatedly until the longest
application in the set completes three times. We then measure un-
fairness and STP (throughput), by using the geometric mean of the
completion times for each program.

Fig. 5 depicts the composition of the 36 randomly generated
workloads we used in our experiments, which are made of bench-
marks from the SPEC CPU2006 and CPU2017 suites. Note that
we selected applications from both suites to experiment with a
wider range of streaming and cache-sensitive programs, as most
benchmarks in both suites exhibit a light sharing, cache-insensitive
execution profile on our platform. This is caused in part due to
the coarse granularity of the cache partitions we can create on
this system: the smallest partition is as big as 2.5MB. As is evident,
we considered workloads of 8, 12 and 16 applications each, so as
to analyze the impact that the workload size has on the fairness
improvement achieved by each approach.

In this section we first evaluate the effectiveness of the cache-
clustering algorithms associated with the KPart, Dunn and LFOC ap-
proaches. We then proceed to analyze how well dynamic clustering
approaches capture the time-changing behavior of the applications
in different workloads.

5.1 Evaluation of Clustering Algorithms
Our goal is to measure the degree of fairness and throughput deliv-
ered by a certain clustering strategy alone (i.e. how applications are
grouped into shared or separate clusters according to their runtime
properties) putting aside the associated overheads due to algorithm
execution at runtime, performance monitoring and cache allocation.
We do account for these overheads in the experiments of the next
section.

To assess the effectiveness of each clustering algorithm, we con-
sider workloads consisting of applications whose behavior falls in a
clear class (cache sensitive, streaming or light sharing) for the vast
majority of the execution (Si workloads in Fig. 5). For the analysis,
we implemented the clustering algorithms used by KPart, Dunn
and LFOC on top of the simulator described in Sec. 3, which accepts
as input the average value of different performance metrics gath-
ered offline for different cache sizes. To conduct the corresponding
experiments, we launch the simulator prior to the execution of
each workload to retrieve the cache-partitions and application-to-
partition mappings imposed by a certain clustering strategy. Then,
we enforce the corresponding cache partitions on a per-process

ICPP ’19, August 05–08, 2019, Kioto, Japan Garcia-Garcia, et al.

astar06
bzip206

cactubssn17

cactusadm06

deepsjeng17

exchange217

fotonik3d17
gamess06

gemsfdtd06
gobmk06

gromacs06
h264ref06

hmmer06
imagick17

lbm06
lbm17

leela17
leslie3d06

libquantum06
mcf06

milc06
nab17

namd06

omnetpp06

omnetpp17
povray06

povray17
sjeng06

soplex06
sphinx306

tonto06

xalancbmk06

xalancbmk17xz17

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
P14
P15

0

1

2

Num
ber of instances

Figure 5: Multiprogram workloads used for our experiments. Each matrix cell indicates the number of instances of a benchmark (x-axis) in a workload (y-axis).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21
0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

U
nf

ai
rn

es
s

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21
0.94

0.96

0.98

1.00

1.02

1.04

1.06

N
or

m
al

iz
ed

S
T

P

Stock-Linux Dunn KPart LFOC Best-Static

Figure 6: Normalized unfairness and STP values obtained by the static version of the various clustering algorithms.

P1 P2 P3 P4 P5 S1 S2 S3 P6 P7 P8 P9 P10 S8 S9 S10 P11 P12 P13 P14 P15 S15 S16 S17
0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

U
nf

ai
rn

es
s

P1 P2 P3 P4 P5 S1 S2 S3 P6 P7 P8 P9 P10 S8 S9 S10 P11 P12 P13 P14 P15 S15 S16 S17
0.94

0.96

0.98

1.00

1.02

1.04

1.06

N
or

m
al

iz
ed

S
T

P

Stock-Linux Dunn LFOC

Figure 7: Normalized unfairness and STP values delivered by the dynamic cache clustering approaches

LFOC: A Lightweight Fairness-Oriented Cache Clustering Policy for Commodity Multicores ICPP ’19, August 05–08, 2019, Kioto, Japan

manner from user-space, using the PMCTrack tool [20], and pro-
ceed to launch the workload, which will use the same static cache
configuration throughout the execution. For comparison purposes,
we have also gathered the results of an ideal cache-clustering policy,
referred to as Best-Static, which establishes the cache-partitions
and application-to-cluster mappings based on the optimal fairness
solution determined by the simulator.

Fig. 6 shows the degree of unfairness and throughput delivered
by the different clustering strategies; the values have been nor-
malized to the results of Stock-Linux (no cache partitioning). The
results reveal that the Dunn approach, designed to optimize fair-
ness, exhibits a non-uniform behavior across workloads; for some
program mixes it is capable to reduce unfairness up to 15.5% , but
for others it causes substantial fairness degradation (by a factor of
up to 1.14x) relative to Stock-Linux. We found that this is due to
its exclusive reliance on the STALLS_L2_MISS performance event ;
the higher the value of this event, the higher the number of cache
ways allotted by Dunn to the application [23]. More specifically,
we observed that some streaming (aggressor) cache-insensitive ap-
plications, such as GemsFDTD or fotonik3d exhibit high values of
this event, as their performance is greatly affected by memory ac-
cesses. These applications can be mapped together to the same (or
overlapping) cache partitions with highly sensitive programs, such
as soplex or omnetpp, for which the event reaches similar figures,
leading to performance degradation and unfairness. Based on this
insight, we conclude that using the STALLS_L2_MISS event alone
is not enough to drive fairness-aware partitioning policies.

We also observe that KPart’s clustering algorithm, designed to
optimize throughput, brings modest throughput gains2 in the work-
loads we explored (up to 3%). However, this approach does bring
substantial unfairness reductions (8.6% on average). Nonetheless,
we observe that LFOC’s simpler and more lightweight partition-
ing algorithm provide substantially better fairness than KPart for
the vast majority of the workloads (up to 27.3%, and 14% on av-
erage relative to Stock Linux). At the same time, LFOC achieves
higher throughput than KPart across the board, and performs in
a close range (1.8% on average) of the Best Static approach (our
approximation to the optimal policy in these workload scenarios).

5.2 Study of the dynamic policies
For the evaluation in this section we used our OS-level implementa-
tion of LFOC, and also created a user-level implementation of Dunn,
as it was originally proposed [23] as a user-level cache clustering ap-
proach. A good property of Dunn is the fact that it only requires the
continuous monitorization of the STALLS_L2_MISS performance
event for the various applications over time. The simplicity of the
Dunn approach stands in contrast to the higher complexity of KPart,
which relies on the ability to accurately gather a substantial amount
of performance information online for each application (LLCMPKI
and IPC values for every possible cache-way count) in order to
apply the clustering algorithm.

In an attempt to evaluate the dynamic version of KPart –referred
to as KPart-Dynaway [3]–we considered the user-level implementa-
tion created by the authors [4]. Unfortunately, this implementation,

2In the original paper, the authors report a 24% average increase in throughput on a
different platform, with workloads whose composition was not disclosed.

Table 2: Average execution time (in ms) of the KPart and LFOC algorithms

#Apps. 4 5 6 7 8 9 10 11
LFOC 0.00151 0.00154 0.00163 0.00174 0.00174 0.00182 0.00191 0.00216
KPart 0.51800 0.79600 1.21800 1.48100 2.01200 2.74200 3.32000 4.14000

which consists of roughly 4K lines of C++ code and makes intensive
use of the Armadillo linear algebra library, was specifically tailored
to the hardware platform where the authors conducted the experi-
ments [3], and makes numerous assumptions that do not apply in
our experimental setting (e.g., the number of cache ways should
be no smaller than the number of applications in the workload).
Due to these platform-specific assumptions and other issues –as
yet unidentified–, the execution of KPart-Dynaway crashes shortly
after the partitioning algorithm is executed for the first time, pre-
venting us from launching any of the workloads we considered
for the evaluation. We leave for future work the adaptation of this
somewhat complex implementation for our platform, and its com-
plete evaluation. Nevertheless, to highlight the enormous difference
between the complexity of KPart’s partitioning algorithm and the
one used by our approach for different number of applications, Ta-
ble 2 shows the execution time for both algorithms (compiled with
aggressive optimizations) for different workload sizes. We were
able to gather that information from KPart’s implementation by
instrumenting the code of the partitioning algorithm that completes
successfully (for workloads with less than twelve applications) right
before the program’s crash. As is evident LFOC’s execution time
(2µs) is up to three orders of magnitude smaller than KPart’s, which
can take over 4ms to complete for 11 applications (slightly longer
than the default timer tick in the Linux kernel). As we showed in
the previous section, this increased complexity does not enable
KPart to provide better fairness than our lightweight approach.

In our OS-level implementation of LFOCwe sample performance
counters every 100M instructions during the normal operation
mode (see Sec. 4) and every 10M instructions during the sampling
mode. Using a shorter instruction window for the sampling mode
makes it possible to reduce the amount of time required for a full
cache way sweep (worst-case scenario). The time required by the
sampling mode cycle is 6.2ms on average. Notably, we observed
that in most cases full cache-way sweeps are not performed under
LFOC as the partitioning algorithm (as explained in Sec. 4) does not
require detailed per-way metrics for all applications, as opposed to
Kpart’s algorithm. In our experiments, the partitioning algorithm
for both Dunn and LFOC is executed every 500ms, as this is the
setting used in the original evaluation of the Dunn approach [23].

Fig. 7 shows the normalized unfairness and throughput values
delivered by the Dunn and LFOC (dynamic) approaches for dif-
ferent workloads. Note that in this case, we considered additional
program mixes (Pi workloads) that include applications such as
xz, astar, mcf or xalancbmk, which exhibit distinct long-term pro-
gram phases with varying degree of memory intensity. Some of
these applications go through highly cache sensitive phases, so
Stock-Linux delivers higher unfairness values in these scenarios.
That is the reason why Dunn exhibits a slightly fairer behavior un-
der these circumstances relative to the scenario considered in the
previous section. Yet, LFOC is capable to provide better throughput

ICPP ’19, August 05–08, 2019, Kioto, Japan Garcia-Garcia, et al.

than Dunn, and improves fairness over Dunn across the board (up
to 20.5% for P4, and 9% on average). With respect to Stock-Linux,
LFOC reduces unfairness by 16.7% on average.

6 CONCLUSIONS
In this article we have presented LFOC, an OS-level cache-clustering
approach that leverages cache-partitioning support in Intel-CAT
enabled multicore processors to improve fairness while maintain-
ing acceptable throughput. LFOC classifies applications into three
classes according to their degree of memory-intensity and cache
sensitivity, and ensures that streaming aggressor benchmarks are
confined to small cache partitions so they are effectively isolated
from cache-sensitive benchmarks, which are assigned an amount
of cache space in accordance to its sensitivity. In doing so, LFOC
tries to mimic the behavior of the optimal cache clustering solution,
which we approximated by means of a simulator. We implemented
LFOC in the Linux kernel and assessed its effectiveness on a com-
mercial multicore platform featuring an Intel Skylake processor.
Our experiments reveal that LFOC is able to deliver an average
16.7% fairness improvement relative to stock Linux. At the same
time, LFOC clearly outperforms two other existing cache-clustering
approaches, one of which was specifically designed to deliver fair-
ness [23].

Key aspects of LFOC are its lightweight clustering algorithm,
the online heuristics it leverages to classify applications online, and
its ability to fairly share the space on the LLC among applications
by using limited monitoring information, which can be obtained
at runtime without collecting performance data for every possible
way count, unlike other cache clustering algorithms [3].

ACKNOWLEDGMENTS
This work has been supported by the EU (FEDER), the Spanish
MINECO and CM, under grants TIN 2015-65277-R and S2018/TCS-
4423. Adrian Garcia-Garcia is supported by a UCM fellowship grant.

REFERENCES
[1] Jacob Brock et al. 2015. Optimal Cache Partition-Sharing. In Proceedings of

the 2015 44th International Conference on Parallel Processing (ICPP) (ICPP ’15).
749–758.

[2] Eiman Ebrahimi et al. 2010. Fairness via source throttling: a configurable and
high-performance fairness substrate for multi-core memory systems. In 15th
Int’l Conf. Architectural Support Programming Lang. and Oper. Syst. (ASPLOS 10).
335–346.

[3] N. El-Sayed et al. 2018. KPart: A Hybrid Cache Partitioning-Sharing Technique
for Commodity Multicores. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 104–117.

[4] N. El-Sayed et al. 2018. Source Code of KPart. https://github.com/Nosayba/kpart.
Accessed: 2019-02-20.

[5] S. Eyerman and L. Eeckhout. 2008. System-Level Performance Metrics for Multi-
program Workloads. IEEE Micro 28, 3 (May 2008), 42–53.

[6] J. Feliu et al. 2016. Perf & Fair: a Progress-Aware Scheduler to Enhance Perfor-
mance and Fairness in SMT Multicores. IEEE Trans. Comput. PP, 99 (2016).

[7] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. 2016. Ginseng:
Market-driven LLCAllocation. In Proceedings of the 2016 USENIXAnnual Technical
Conference (USENIX ATC ’16). 295–308.

[8] A. Garcia-Garcia, J. C. Saez, and M. Prieto-Matias. 2018. Contention-Aware Fair
Scheduling for Asymmetric Single-ISA Multicore Systems. IEEE Trans. Comput.
67, 12 (Dec 2018), 1703–1719. https://doi.org/10.1109/TC.2018.2836418

[9] Adrian Garcia-Garcia, Juan Carlos Saez, and Manuel Prieto-Matias. 2019. PBB-
Cache: A parallel branch-and-bound based cache-partitioning simulator. Submit-
ted for review to International Journal of Computatioinal Science (2019).

[10] JA Hartigan and MA Wong. 1979. Algorithm AS 136: A K-means clustering
algorithm. Applied Statistics (1979), 100–108.

[11] Samira Manabi Khan et al. 2014. Improving cache performance using read-write
partitioning. In 20th IEEE International Symposium on High Performance Computer
Architecture, HPCA 2014. 452–463.

[12] David Lo et al. 2015. Heracles: improving resource efficiency at scale. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture.
450–462.

[13] R Manikantan, Kaushik Rajan, and R Govindarajan. 2012. Probabilistic Shared
Cache Management (PriSM). In Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA ’12). 428–439.

[14] Sparsh Mittal. 2017. A Survey of Techniques for Cache Partitioning in Multicore
Processors. ACM Comput. Surv. 50, 2, Article 27 (May 2017), 27:1–27:39 pages.

[15] Tomer Y. Morad et al. 2016. EFS: Energy-Friendly Scheduler for memory band-
width constrained systems. J. Parallel and Distrib. Comput. 95 (2016), 3 – 14.

[16] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2016. Whirlpool:
Improving Dynamic Cache Management with Static Data Classification. In Pro-
ceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16). 113–127.

[17] Onur Mutlu and Thomas Moscibroda. 2007. Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors. In 40th Ann. IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO 07). 146–160.

[18] K. Nguyen. 2016. Introduction to Cache Allocation Technology in the In-
tel Xeon Processor E5 v4 Family. https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology. Accessed: 2019-03-20.

[19] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In Proceedings of MICRO 06. 423–432.

[20] Juan Carlos Saez et al. 2017. PMCTrack: Delivering Performance Monitoring
Counter Support to the OS Scheduler. Comput. J. 60, 1 (2017), 60–85.

[21] Juan Carlos Sáez, José Ignacio Gomez, and Manuel Prieto. 2008. Improving Prior-
ity Enforcement via Non-Work-Conserving Scheduling. In ICPP ’08: Proceedings
of the 2008 37th International Conference on Parallel Processing. 99–106.

[22] Alberto Scolari, Davide Basilio Bartolini, and Marco Domenico Santambrogio.
2016. A Software Cache Partitioning System for Hash-Based Caches. ACM Trans.
Archit. Code Optim. 13, 4, Article 57 (Dec. 2016), 57:1–57:24 pages.

[23] V. Selfa et al. 2017. Application Clustering Policies to Address System Fair-
ness with IntelâĂŹs Cache Allocation Technology. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). 194–205.

[24] Timothy Sherwood, Brad Calder, and Joel Emer. 1999. Reducing Cache Misses
Using Hardware and Software Page Placement. In Proceedings of the 13th Interna-
tional Conference on Supercomputing (ICS ’99). 155–164.

[25] Lavanya Subramanian et al. 2015. The Application Slowdown Model: Quan-
tifying and Controlling the Impact of Inter-application Interference at Shared
Caches and Main Memory. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO-48). 62–75.

[26] K. Van Craeynest et al. 2013. Fairness-aware scheduling on single-ISA hetero-
geneous multi-cores. In 22nd Int’l Conf. Parallel Arch. Compilation Techniques
(PACT 13). 177–187.

[27] Ruisheng Wang and Lizhong Chen. 2014. Futility Scaling: High-Associativity
Cache Partitioning. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-47). 356–367.

[28] Di Xu et al. 2012. Providing Fairness on Shared-memory Multiprocessors via
Process Scheduling. In Proc. ACM Int’l Conf. Measurement and Modeling Comp.
Syst. (SIGMETRICS 12). 295–306.

[29] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. 2014. COLORIS: A Dynamic
Cache Partitioning System Using Page Coloring. In Proceedings of the 23rd Interna-
tional Conference on Parallel Architectures and Compilation (PACT ’14). 381–392.

[30] Chenjie Yu and Peter Petrov. 2010. Off-chip Memory Bandwidth Minimization
Through Cache Partitioning for Multi-core Platforms. In Proceedings of the 47th
Design Automation Conference (DAC ’10). 132–137.

[31] Heechul Yun et al. 2014. PALLOC: DRAM bank-aware memory allocator for
performance isolation on multicore platforms. In 20th Real-Time Embedded Tech.
and Applications Symp. (RTAS 14). 155–166.

[32] H. Yun et al. 2016. Memory Bandwidth Management for Efficient Performance
Isolation in Multi-Core Platforms. IEEE Trans. Comput. 65, 2 (Feb 2016), 562–576.

[33] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards Practical Page
Coloring-based Multicore Cache Management. In Proceedings of the 4th ACM
European Conference on Computer Systems (EuroSys ’09). 89–102.

[34] Haishan Zhu and Mattan Erez. 2016. Dirigent: Enforcing QoS for Latency-
Critical Tasks on Shared Multicore Systems. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’16). 33–47.

[35] Sergey Zhuravlev et al. 2012. Survey of Scheduling Techniques for Addressing
Shared Resources in Multicore Processors. ACM Comput. Surv. 45, 1, Article 4
(Dec. 2012), 28 pages.

[36] Sergey Zhuravlev et al. 2012. Survey of Scheduling Techniques for Addressing
Shared Resources in Multicore Processors. ACM Comput. Surv. 45, 1, Article 4
(Dec. 2012), 28 pages.

https://doi.org/10.1109/TC.2018.2836418
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Metrics
	2.2 Cache partitioning vs. Cache clustering
	2.3 Related Work

	3 Analysis of the optimal cache-clustering solution
	4 Design and Implementation
	4.1 Algorithm outline
	4.2 Application Classification

	5 Experiments
	5.1 Evaluation of Clustering Algorithms
	5.2 Study of the dynamic policies

	6 Conclusions
	Acknowledgments
	References

