
PBBCache: an open-source parallel simulator for rapid

prototyping and evaluation of cache partitioning and

cache-clustering policies

Adrian Garcia-Garcia

Complutense University of Madrid
Facultad de Informática,

Calle Profesor Garćıa Santesmases 9, Madrid 28040, Spain
Phone: +34 (91) 3944394

Fax: +34 (91) 3944687

Juan Carlos Saez∗

Complutense University of Madrid
Facultad de Informática,

Calle Profesor Garćıa Santesmases 9, Madrid 28040, Spain
Phone: +34 (91) 3944892

Fax: +34 (91) 3944687

José Luis Risco-Martin

Complutense University of Madrid
Facultad de Informática,

Calle Profesor Garćıa Santesmases 9, Madrid 28040, Spain
Phone: +34 (91) 3947543

Fax: +34 (91) 3944687

Manuel Prieto-Matias

Complutense University of Madrid
Facultad de Informática,

Calle Profesor Garćıa Santesmases 9, Madrid 28040, Spain
Phone: +34 (91) 3944550
Fax: +34 (91) 3944687

∗This is the principal corresponding author
Email addresses: adriagar@ucm.es (Adrian Garcia-Garcia), jcsaezal@ucm.es

(Juan Carlos Saez), jlrisco@ucm.es (José Luis Risco-Martin), mpmatias@ucm.es
(Manuel Prieto-Matias)

Preprint submitted to Journal of Computational Science March 6, 2020

Abstract

Chip multicore processors (CMPs) constitute the architecture of choice for
a wide spectrum of computing systems, ranging from power-efficient mobile
devices to high-performance server platforms. Despite their benefits, the
contention that appears when multiple applications compete for the use of
shared resources among cores, such as the last-level cache (LLC), may lead
to substantial performance degradation. This may have a negative impact
on key system metrics such as throughput and fairness. Partitioning of the
LLC (i.e., assigning a separate cache partition with a certain size to each
application) has been proven effective to mitigate contention-related effects.

In this article we propose a parallel simulator that makes it possible to
quickly compare the effectiveness of different cache-partitioning policies with
the optimal solution for different optimization objectives. The simulator can
obtain the optimal solution for any point during the execution of a multi-
program workload where each application goes through a certain program
phase. Our proposal leverages a slowdown-prediction model that accounts for
degradation due to cache sharing and memory-bandwidth contention, which
constitute the major factors of shared-resource contention on current CMPs.
To determine the optimal solution for two optimization objectives (through-
put and fairness optimization), we leverage a novel distributed-memory par-
allel branch-and-bound strategy specifically designed to efficiently distribute
the computation across multiple processing cores.

Keywords: multicore processors, cache partitioning, branch and bound,
simulation, HPC, Intel CAT, Python, ZeroMQ, ipyparallel

1. Introduction

Today, chip multicore processors (CMPs) constitute the architecture of
choice for most modern general-purpose computing systems and will likely
continue to be dominant in the near future. Despite its benefits, CMPs pose
a number of challenges to the system software. One of the major challenges is5

how to mitigate the effects that come from contention on shared resources [1].
This contention stems from the fact that cores in a CMP are not truly inde-
pendent processors but instead typically share a last-level cache (LLC) and
other memory-related resources with the remaining cores, such as a DRAM
controller and a memory bus or interconnection network [2, 3]. Applications10

2

running simultaneously on the various cores may compete with each other for
these shared resources, which could degrade their performance unevenly [4].

Partitioning of the shared LLC (i.e., assigning a separate cache parti-
tion with a certain size to each application in a workload) has been proven
effective to mitigate shared resource contention effects [5, 6]. Recently, cache-15

partitioning hardware support has been adopted in commodity Intel proces-
sors via the Intel Cache Allocation Technology (CAT) [7] – part of Intel
RDT. Because these extensions are available directly in privileged proces-
sor modes – where the operating system (OS) kernel or the virtual machine
monitor (VMM) usually run – the system software constitutes the most nat-20

ural place to implement cache-partitioning algorithms. At this level, we can
efficiently make use of these hardware extensions (i.e. without costly system
calls) along with hardware performance monitoring counters (PMCs), which
provide valuable information on the cache-access behavior of applications,
making it possible to guide cache-partitioning algorithms on-line [4, 8].25

Recently, several cache-clustering algorithms [4, 8, 9] have been proposed.
Cache clustering (aka partition-sharing) constitutes a generalization of strict
cache partitioning, where, instead of assigning applications to separate cache
partitions, each partition can be shared by a group of applications (aka clus-
ter). Partitioning the cache optimally for a certain optimization objective30

is an NP-hard problem [6], but determining the optimal cache-clustering so-
lution adds a new level of complexity, as a decision must be made on how
to best group applications into clusters, and how to optimally distribute
cache space across clusters. Previous work has pointed out that on systems
supporting a reduced number of partitions or the creation of coarse-grained35

cache partitions only (i.e., in the order of megabytes) cache clustering proves
more effective than strict cache partitioning as the number of applications
increases [4, 8]. This is due to the finer grained distribution of the cache
space that naturally results from sharing cache ways between applications.

A number of challenges arise in the design and implementation of ef-40

fective cache-partitioning and clustering algorithms in the system software.
Firstly, making decisions based exclusively on application cache behavior
does not always provide the best results. The degree of bandwidth con-
tention, which largely depends on how the cache is partitioned [1, 10], may
substantially degrade the performance of individual applications. Failing45

to consider bandwidth-related performance degradation may backfire by re-
ducing the benefits of cache partitioning [1, 2]. Unfortunately, efficiently
determining the combined performance degradation that comes from cache

3

sharing and bandwidth contention constitutes a difficult problem [11, 12].
Secondly, implementing a cache-partitioning or clustering algorithm in the50

system software (i.e. OS kernel or VMM) requires substantial programming
effort due to the difficulties associated with kernel-level development, such
as the fact that implementation errors can bring down the entire system;
testing any change in the algorithm’s code may require to build, reinstall
the OS kernel and reboot the machine; or the need of creating a very effi-55

cient implementation that ensures a low system latency and, is free of any
floating-point operations, as these are largely impractical at this level [13].

In this article, we present PBBCache, an open-source [14] parallel simu-
lator enabling to efficiently evaluate cache-partitioning and clustering algo-
rithms. PBBCache relies on offline-collected application performance data60

(e.g., instructions per cycle, memory bandwidth consumption, etc.) to ap-
proximate the degree of throughput, fairness or other relevant metrics for a
workload under a particular partitioning approach. Our simulator has been
designed to achieve two main goals. First, it is meant to serve as a tool for
rapid prototyping and evaluation of partitioning policies. To increase pro-65

gramming productivity, PBBCache has been implemented in Python, which
is one of the most widely used programming languages today [15]. The sim-
ulator allows researchers to guide the design process of their algorithms and,
more importantly, to easily discard unpromising approaches without having
to go through the tedious development process in the system software. The70

recent LFOC policy [8] is a clear example of effective partitioning scheme
whose design process was guided with PBBCache. Second, the simulator
has been built to enable the assessment of the real potential of partitioning
algorithms and to identify their limitations, by providing a comparison with
the optimal solution. Even though many cache-partitioning and clustering75

approaches have been proposed [4, 5, 9, 10], it still remains unclear how close
they perform relative to the optimal solution. To fill this gap, PBBCache
has the ability to efficiently determine the optimal solution for different op-
timization objectives using a distributed-memory parallel strategy.

Apart from the proposed simulator, we make the following contributions:80

• PBBCache is equipped with a slowdown-prediction model enabling to
determine the performance degradation that an application suffers due
to cache-sharing and memory-bandwidth contention. To approximate
bandwidth contention for a certain distribution of cache space across
applications in a workload, we extended the probabilistic model pro-85

4

posed in [11] with information on how sensitive an application is to a
reduction in its effective bandwidth consumption at runtime.

• To efficiently determine the optimal cache space distribution, the simu-
lator leverages a novel parallel distributed-memory branch-and-bound
(B&B) strategy that follows the master-slave pattern. Note that this90

strategy has been specifically designed for the optimization problems
that arise in the context of cache partitioning, and enables to effectively
distribute the computation across cores on one or multiple computing
nodes. A key design aspect is the mechanism used to break down the
work to be done in parallel into tasks (referred to as subnodes) with a95

similar computational complexity, which provides good scalability. The
effectiveness of the bounding functions we devised for various optimiza-
tion objectives, also contributes to the success of the B&B approach.

• To the best of our knowledge, our proposal is the first parallel ap-
proach to solve the optimal cache-partitioning problem by factoring100

in both cache-sharing and memory-bandwidth contention. Specifically,
we studied two optimization objectives – fairness and throughput op-
timization –, and found that each associated optimization problem can
be expressed as a mixed-integer non-linear program. Notably, state-of-
the-art non-linear solvers [16, 17, 18, 19] fail to provide a solution for105

these problems (encoded in AMPL), unlike our parallel B&B approach.
• To evaluate the effectiveness of PBBCache we implemented existing
partitioning policies [5, 8, 9, 10] on top of it, and compared the results
it provides with the actual figures observed on real hardware equipped
with Intel-CAT enabled processors. Moreover, to assess the perfor-110

mance and scalability of the parallel B&B algorithm we conducted
experiments using single-node and multi-node machine configurations.

The remainder of the paper is organized as follows. Sec. 2 presents back-
ground on cache partitioning. Sec. 3 discusses related work. Sec. 4 introduces
PBBCache’s design and its inner workings. Sec. 5 showcases our strategy to115

determine the optimal cache-partitioning solution via parallel B&B. Sec. 6
covers the experimental evaluation, and Sec. 7 concludes the paper.

2. Background

In this section we first describe the metrics we considered to assess dif-
ferent optimization objectives. Then, we formally introduce the problems of120

optimal cache partitioning and optimal cache clustering.

5

2.1. Metrics

To measure the performance degradation of an individual application ai in
a multi-program workload consisting of N applications A = {a1, a2, · · · , aN}
we consider the Slowdown metric, defined as follows:125

Slowdownai =
CTpart,ai

CTalone,ai

(1)

where CTpart,ai denotes the completion time of application ai under a given
cache-partitioning scheme and running together with the rest of applications
in A; and CTalone,ai is the completion time observed for the application when
it runs alone on the CMP system.

Defining the slowdown in terms of completion time, as in Eq. 1, allows130

us to calculate it for both multithreaded and single-threaded applications.
In addition, for single-threaded (ST) applications the slowdown can be also
expressed in terms of the average number of instructions per cycle observed
when it runs alone (IPCalone,ai) and that achieved when it runs with other
applications in the workload (IPCpart,ai), as follows:135

Slowdown STai =
IPCalone,ai

IPCpart,ai

=
CTpart,ai

CTalone,ai

(2)

Previous research on fairness for CMPs [2, 20] define a scheme as fair if
equal-priority applications in a workload A suffer the same slowdown as a
result of sharing the system. To cope with this notion of fairness, we employ
the unfairness metric [2, 3, 20] (lower-is-better), which is defined as follows:

Unfairness =
MAX(Slowdowna1

,...,Slowdownan
)

MIN(Slowdowna1
,...,Slowdowna1

)
(3)

To quantify throughput, previous works [4, 21] have employed the System140

ThroughPut (STP), which is defined as follows:

STP =
n

∑

i=1

(

CTalone,ai

CTpart,i

)

=
n

∑

i=1

(

1

Slowdownai

)

(4)

2.2. Optimal cache-partitioning problem

Before presenting a formal problem definition, it is worth describing how
current cache-partitioning algorithms typically operate. For simplicity in

6

the explanation we will focus on way-partitioning, since this is the specific145

hardware implementation found in our experimental platforms (Intel CAT).
Essentially, a partitioning algorithm has to distribute the available cache
ways among applications based on their runtime properties so as to accom-
plish the objective it was designed to achieve (e.g., maximizing throughput,
minimizing energy consumption, etc.). Notably, this kind of algorithms, as150

well as the corresponding optimization problem we describe next, just de-
termines the number of ways that will be allotted to each applications, but
not which exact ways are assigned. An important challenge is that certain
applications may go through different program phases, which may lead to
time-changing cache behavior. Under these circumstances, partitioning the155

cache statically (i.e. fixed cache way distribution throughout the execution)
may not constitute the best solution. To cope with phase changes, parti-
tioning algorithms are usually invoked periodically [4, 5, 8, 9]. Specifically,
the system software continuously monitors application behavior by using (for
example) performance counters; the more recent values of the gathered per-160

formance metrics – these usually differ across algorithms – are used as input
to the partitioning algorithm (invoked every so often) so as to determine the
partitioning for the next execution interval, where the applications are likely
to exhibit a similar behavior to that reflected by the recent collected data.

Our goal is to determine the optimal cache partitioning for a workload in165

a certain execution interval where the applications exhibit a stable behavior
(no distinct program phases1). In providing researchers with this optimal
solution generated off-line with our simulator for a certain optimization ob-
jective, they can quickly compare it against the solution provided by any
partitioning algorithm, which also makes the same assumption: applications170

will likely exhibit a stable behavior in the near future, which is similar to
that reflected by the latest data collected. Making a comparison with mul-
tiple application mixes enables to quickly assess the real effectiveness of a
partitioning algorithm. More importantly, this allows to identify potentially
conflicting workload scenarios where the algorithm fails to achieve good re-175

sults, thus providing valuable insights to guide the algorithm’s design process.
The optimal cache-partitioning problem can be generically formulated

1Determining an optimal solution for a workload considering program phases is a much
more complex problem, especially because phase transitions do not happen at the same
time in multiple applications. That would require to break down the whole workload exe-
cution into stages of stable behavior across applications, and apply our proposed method
to detect the optimal for solution for each and every “stable stage”.

7

as a Mixed Integer Program (MIP). Let A be a workload consisting of N
applications {a1, a2, · · · , aN} that run on a system featuring a W -way last-
level cache with W ≥ N , and let K be {1..W}. The set DV of decision
variables is defined as {wa,k | ∀a ∈ A, k ∈ K}, where each decision variable
wa,k is a binary variable indicating whether or not an application a ∈ A is
assigned k ways. The associated MIP is formulated by considering a generic
optimization function f , as follows:

Minimize: f(DV) (5)
Subject to:

∑

k∈K

wa,k = 1, ∀a ∈ A Only 1 way assignment per application(6)

∑

a∈A

∑

k∈K

k · wa,k = W No cache ways remain unused (7)

1 ≤
∑

k∈K

k · wa,k ≤ W −N + 1, ∀a ∈ A Each application gets at least 1 way (8)

In this work we focus on two specific optimization problems, whose def-
inition entail incorporating non-linear constraints to the set of Eqs. 5 to 8.180

The first problem, referred to as Opt-STP, is system throughput optimiza-
tion, and it comes down to maximizing the STP metric. The second one,
denoted as Opt-Unf, strives to find the cache space distribution that mini-
mizes the Unfairness metric, so as to optimize system-wide fairness. Both the
STP and Unfairness metrics depend on the slowdown experienced by each185

application, which in turn depend on the cache-way distribution (decision
variables in the generic MIP). Notably, Opt-STP and Opt-Unf constitute
non-linear optimization problems. This stems from the fact that evaluating
either optimization function (STP or Unfairness) for any feasible cache-way
distribution requires determining the slowdown of each application by means190

of a prediction model that factors in the combined performance degradation
due to cache and bandwidth contention. In our proposed model, this entails
solving a set of non-linear equations, as we will describe in Sec. 4.2. The de-
tailed formalization of Opt-STP and Opt-Unf as Mixed Integer Non-Linear
Problems (MINLPs) can be found in the Appendix. Notably, we created195

AMPL implementations for these problems and tested them with different
state-of-the-art non-linear solvers [16, 17, 18, 19], but found that all of them
failed to provide a solution. More importantly, even for small workloads
– where PBBCache finds the optimal solution sequentially in less than one

8

1 2 3 4 5 6 7 8 9 10 11
Number of applications

0

50

100

150

200

250
Po

ss
ib

le
 p

ar
tit

io
ns

(a) 11 ways

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of applications

0

20000

40000

60000

80000

Po
ss

ib
le

 p
ar

tit
io

ns

(b) 20 ways

Figure 1: Number of possible ways to partition a LLC as we increase the number of
applications for 11 and 20 cache ways, respectively. The number of ways and applications
considered are based on the features of Platforms A and B, described in Sec. 6.1

minute – they also failed to find a local minima after 1 hour of execution.200

We also tried feeding the solvers with an initial solution determined earlier
via a heuristic algorithm, which was unable to provide the optimal solution
for the workloads considered. In this case, the solvers were not even able to
find a better solution in one hour of execution (we configured the solvers so
that the execution was aborted automatically if a near-optimal solution was205

not found within that time period). By contrast, for the largest workloads
we tested with (see Sec. 6), our simulator is capable of finding an optimal
solution in less than 9 minutes by using via a sequential algorithm, and in less
than 34s by leveraging a parallel B&B strategy on a 28-core server platform.

For the sake of completeness, the following recursive definition provides210

the number of possible ways P to partition a W-way LLC for N applications:

P (W,N) =

1 W = N or N = 1

N W = N + 1
∑W−N+1

i=1
P (W − i, N − 1) otherwise

(9)

As shown in Fig. 1, the P function reaches the maximum when N =
⌈W/2⌉. The number of possible ways to partition the LLC rapidly increases
with the application count (N), but it drops back symmetrically towards 1215

when N > ⌈W/2⌉. Due to the vast search space when W is high, determining
the best solution via extensive exploration is largely impractical.

2.3. Optimal cache-clustering problem

Optimal cache clustering constitutes a generalization of the optimal cache-
partitioning problem. When cache clustering is used, applications in the220

workload are grouped into a number of sets, each one referred to as a clus-

9

ter ; the cache space is divided into separate partitions, one for each cluster.
So, applications in the same cluster share the same cache partition.

To formally define the optimal cache clustering for a certain workload A
consisting of N applications, we first introduce some basic terminology. We225

use the term cluster set to refer to any possible way to break down A into
clusters so that the available cache space (W ways) can then be distributed
across clusters (i.e. each cluster gets at least one way). A cluster set CS is
one of the possible partitions of the A set (i.e. grouping of the set’s elements
into non-empty subsets) with a number of items ≤ W . Let CA be the set230

with all possible cluster sets of A. Note that |CA| ≤ BN , where BN denotes
the Bell number, namely the number of possible partitions of the A set. Let
f be the objective function to be minimized in the optimization problem. We
define OPTCS,f for a certain cluster set CS ∈ CA, as the value of f associated
with the distribution of cache ways across clusters in CS that minimizes f .235

For workload A and a certain optimization function f , we define the
optimal cache clustering as the cluster set in CA that exhibits the optimal
(minimal) OPTCS,f value. A potential way to determine the solution to the
optimal cache-clustering problem is to generate CA and then identify the
optimal solution by comparing the OPTCSi,f values for each CSi ∈ CA. In240

turn, determining OPTCSi,f for any CSi constitutes an instance of the optimal
cache-partitioning problem, where cache space is distributed among clusters
rather than among applications. Given the non-linear nature of Opt-STP
and Opt-Unf, determining the optimal cache clustering for the throughput
and fairness optimization objectives is also a non-linear problem.245

3. Related Work

Our PBBCache simulator is a tool for rapid prototyping and evaluation of
cache-partitioning and cache-clustering approaches, and it is equipped with
several sequential and parallel B&B algorithms to solve the Opt-STP and
Opt-Unf optimization problems. In discussing related work we first consider250

partitioning policies. Next, we cover previous research on parallel B&B.

3.1. Cache-partitioning and cache-clustering policies

A large body of work has studied the cache-partitioning problem and
proposed different approaches to determine promising solutions using ap-
proximate algorithms [5, 9, 10, 22]. A recent survey [6] discusses the most255

effective approaches for various optimization objectives, such as maximizing
throughput or reducing energy consumption. Specifically, in our simulator

10

we implemented the UCP [5] and Yu-Petrov [10] algorithms – described in
Sec. 4.4, which primarily strive to optimize system throughput.

More recently, different cache-clustering algorithms have been proposed [4,260

8, 9]. We implemented the KPart [9] and LFOC [8] policies in PBBCache.
Both policies are described in detail in Sec. 4.4. LFOC was proposed as
part of our earlier work [8], and constitutes the first partitioning algorithm
whose design process was guided with PBBCache. Specifically, LFOC tries
to mimic the behavior of the optimal clustering solution on platforms featur-265

ing an Intel Skylake processor, which we were able to approximate with our
simulator. Other authors [4] have proposed partitioning algorithms where
partitions overlap with each other; these schemes do not constitute pure
cache-clustering approaches according to the definition presented in Sec. 2.
The LFOC approach is able to deliver better performance and fairness than270

this kind of algorithms, as shown in [8].
We should highlight that none of these works [4, 5, 9, 10] provide a

explicit comparison of the corresponding proposal with the optimal cache-
partitioning solution, as we do in this work. Hence, this analysis constitutes
an important contribution of our article.275

3.2. Parallel Branch-and-Bound

The B&B method constitutes a classical approach to solve combinatorial
optimization problems. It can be considered a search space enumeration that
explores a subset of feasible solutions. The effectiveness of an implementation
of the B&B method for a specific problem largely depends on several design280

aspects, such as the bounding function used for pruning, the rule to select
the next node to be processed, or the mechanism to determine the initial so-
lution [23]. In minimization problems, the bounding function returns a lower
bound of the cost (i.e. value of the optimization function used) of the best
solution reachable from a specific node. B&B algorithms for minimization285

problems maintain a variable with the cost of the best solution found thus
far (aka incumbent), which is an upper bound of the cost of the optimal solu-
tion. Conversely, in maximization problems, the bounding function returns
an upper bound of the cost of the best solution reachable from a node, and a
variable is used to maintain a lower bound of the cost of the optimal solution.290

As an illustrative example, Algorithm 1 depicts the pseudo-code of a
sequential implementation of the B&B method for a minimization problem.
A heuristic algorithm is used to determine the initial solution, which is used
for the initialization of the upper bound (lines 1-3). A priority queue is

11

Algorithm 1: Sequential B&B algorithm. (variant of the one defined in [24]).

1 incumbent← initial solution provided by a heuristic algorithm
2 upper bound← incumbent.Cost();
3 prio q ← [root node];
4 while prio q is not empty do
5 node← pop highest priority node from prio q
6 foreach child of node do
7 if child.isSolution() && child.Cost() < upper bound then
8 (incumbent, upper bound) ← (child, child.Cost());
9 Remove nodes from prioq whose cost > upper bound;

10 else
11 lower bound← bounding function (child);
12 child.setLowerBound(lower bound);
13 if child is a feasible node && lower bound < upper bound then
14 prio q.append(child);
15 end
16 end
17 end
18 end

used to keep nodes as they are expanded during the search (line 14). As295

for the node selection rule, we observed that using best-first search in the
optimal cache-partitioning problem provides better performance than depth-
first search. In addition, the former approach is less sensitive to the order
in which applications are listed in the workload (that determines the area of
the search-space tree where the optimal solution is located). Specifically, the300

node in the queue with the smallest lower bound is processed first.
An important contribution of this work is the parallel B&B strategy that

our simulator leverages to determine the optimal cache-partitioning solution.
As we explain in Sec. 5, it is a distributed-memory strategy that follows a
master-slave pattern. The parallelization of B&B has been widely studied305

since it represents a classical high-level problem-solver paradigm in computer
science [23, 24, 25]. There are critical implementation challenges that must be
faced [24, 25], such as the following: initial definition of the search space, work
allocation policies, communication of key information between processes, the
minimization of idleness and the maximization of useful work. Our parallel310

strategy has been carefully designed to cope with many of these challenges
that also arise in context of the Opt-STP and Opt-Unf non-linear problems.
To the best of our knowledge, ours constitutes the first attempt to efficiently
solve the optimal cache-partitioning problem via parallel B&B when factoring
in both cache-sharing and memory-bandwidth contention.315

Crainic et al. [24] group parallel B&B algorithms into two main categories:
tree-based and node-based strategies. Algorithms in the first category aim to
build and explore the search space tree in parallel. By contrast, node-based

12

approaches aim to accelerate a particular operation mainly at the node level,
such as evaluation or bounding. The vast majority of the proposed parallel320

B&B algorithms exploit a tree-based strategy or a combination of node and
tree parallelization [26, 27, 28, 29, 30]. Many frameworks have also been
proposed to simplify the development of parallel B&B algorithms [24]. A
well-known example is Bobpp [28, 30, 31], which allows the implementation
of combinatorial problem solvers on both shared and distributed-memory ar-325

chitectures. Notably, the use of a framework is not always the best approach
when dealing with a specific problem since custom solutions can take into
account some characteristics that optimize performance [28]. Indeed, our
implementations feature specific optimizations tailored to the Opt-Unf and
Opt-STP problems. A key aspect of our approach is the fact that it considers330

subnodes as the work unit. As we explain in Sec. 5.3, the subnode abstrac-
tion allows us to break down the associated processing of a single node into
tasks with similar computational complexity, which enables to deliver bet-
ter scalability than that achieved by considering coarser-grained work units.
This one and many other design aspects of our strategy are motivated by335

the high computational cost associated with evaluating the bounding and
optimization functions, which require solving a set of non-linear equations.

4. Design of the PBBCache simulator

In this section we provide an overview of the simulator design. We begin
by introducing the structure of the simulator’s input data and the interac-340

tion with it via the command line. Then, we describe the technique used to
approximate the slowdown for each application in a workload based on the
amount of cache space allotted and the degree of memory-bandwidth con-
tention. Finally, we outline the partitioning algorithms implemented in our
cache-partitioning simulator, and showcase some implementation details.345

4.1. Input data and command-line options

PBBCache is a command-line tool. As depicted in Fig. 2 it accepts as
input two text files: a workloads file and a metrics file. The workloads file
specifies the composition of the workloads that will be used in the simulation;
each workload (one per line) is encoded as a comma-separated list of appli-350

cation names. The metrics file stores a table, where each row contains the
values of various runtime metrics (e.g. instructions per cycle, cache miss rates
on different cache levels, memory bandwidth consumption, memory-related

13

metrics.csv workloads.csv

sphinx306,lbm06,libquantum06,applu00,soplex06,milc06
bzip206,equake00,swim00,omnetpp06,applu00,gobmk06
hmmer06,gamess06,bwaves06,gobmk06,astar06,libquantum06
namd06,hmmer06,gamess06,bwaves06,soplex06,libquantum06
omnetpp06,lbm06,sphinx306,hmmer06,vortex00,h264ref06
GemsFDTD06,leslie3d06,cactusADM06,soplex06,povray06
...

BENCH,NR_WAYS,ipc,llcrpki,llcmpki,bandwidth_mbps,stalls
lbm06,1,1.865047,31.873903,29.647035,7224.522222,0.2064
lbm06,2,1.870109,31.915122,26.065821,6379.943102,0.2048
lbm06,3,1.872671,31.913001,23.272892,5630.221235,0.2040
lbm06,4,1.87643,31.906207,21.167986,5111.108885,0.2027
lbm06,5,1.878432,31.909316,19.736662,4838.692666,0.2019
...

Simulator

$./test/sim.py -C -f table -a lfoc,yu-petrof,eqp,kpart,ucp -s ./data/metrics.csv ./data/workloads.csv

W#Ê ÊAlgorithm Ê Ê Ê Ê NameÊ Ê Ê Ê Ê Ê ÊMask Ê Ê Ê Ê Ê Ê Ê Ê STPÊ Ê Ê Ê Slowdown
W1Ê ÊlfocÊ Ê Ê sphinx306Ê Ê 0x600(2)Ê Ê 0.90054 1.11045
W1Ê ÊlfocÊ Ê Ê lbm06Ê Ê Ê Ê 0x1(1)Ê Ê Ê 0.98892 1.0112Ê
W1Ê ÊlfocÊ Ê Ê libquantum06 0x180(2)Ê Ê 0.91338 1.09484
W1Ê ÊlfocÊ Ê Ê applu00Ê Ê Ê 0x1(1)Ê Ê Ê 0.95252 1.04984
W1Ê ÊlfocÊ Ê Ê soplex06Ê Ê 0x7e(6)Ê Ê Ê 0.9158 1.09194
W1Ê ÊlfocÊ Ê Ê milc06Ê Ê Ê 0x1(1)Ê Ê Ê 0.97283 1.02793
W1Ê ÊlfocÊ Ê Ê OVERALLÊ Ê Ê 0.063377sÊ Ê 5.644Ê 1.09815
W1Ê Êyu-petrof sphinx306Ê Ê 0x700(3)Ê Ê 0.92682 1.07895
W1Ê Êyu-petrof lbm06Ê Ê Ê Ê 0xc0(2)Ê Ê Ê 0.99308 1.00697
W1Ê Êyu-petrof libquantum06 0x30(2)Ê Ê Ê 0.91338 1.09484
W1Ê Êyu-petrof applu00Ê Ê Ê 0xc(2)Ê Ê Ê 0.96032 1.04132
W1Ê Êyu-petrof soplex06Ê Ê 0x2(1)Ê Ê Ê 0.70131 1.4259Ê
W1Ê Êyu-petrof milc06Ê Ê Ê 0x1(1)Ê Ê Ê 0.97458 1.02608
W1Ê Êyu-petrof OVERALLÊ Ê Ê 0.000634sÊ Ê 5.46948 1.41603
W1Ê Êequal-part sphinx306Ê Ê 0x600(2)Ê Ê 0.90054 1.11045
W1Ê Êequal-part lbm06Ê Ê Ê Ê 0x180(2)Ê Ê 0.99308 1.00697
W1Ê Êequal-part libquantum06 0x60(2)Ê Ê Ê 0.91338 1.09484
W1Ê Êequal-part applu00Ê Ê Ê 0x18(2)Ê Ê Ê 0.96032 1.04132
W1Ê Êequal-part soplex06Ê Ê 0x6(2)Ê Ê Ê 0.75889 1.31772
W1Ê Êequal-part milc06Ê Ê Ê 0x1(1)Ê Ê Ê 0.97458 1.02608
W1Ê Êequal-part OVERALLÊ Ê Ê 0.000003sÊ Ê 5.50078 1.30859
W1Ê ÊkpartÊ Ê sphinx306Ê Ê 0x6(2)Ê Ê Ê 0.90054 1.11045
...

4.6 4.8 5.0 5.2 5.4 5.6 5.8
STP

1.1

1.2

1.3

1.4

1.5

1.6

U
n
fa

ir
n
e
s
s

W1

W2

W3

W4

W5

W6

W1

W2

W3 W4

W5

W6

W1

W2 W3W4

W5

W6

W1

W2

W3

W4

W5

W6

W1

W2

W3W4

W5

W6

equal-part

lfoc

kpart

yu-petrof

ucp

Figure 2: Simulator’s diagram that shows an example of the user interaction with the
simulator via command line, the data input and the generated output.

stall cycles, etc.) for a specific application, which have been gathered offline
with PMCs when the application runs alone on a certain platform with a355

fixed number of cache ways. Essentially, this file summarizes the behavior of
each application with every possible cache way count. The various metrics,
which can be easily gathered on Intel processors that support Intel CAT, are
used as input to different partitioning algorithms (as discussed in Sec. 4.4
each algorithm uses different metrics), and are also required to determine360

both the slowdown (see Sec. 4.2) and the amount of cache space each appli-
cation gets inside a cluster (see Sec. 4.3). In creating the metrics file, the user
may decide to include the information only for a particular program stage
(e.g. first K billion instructions, as in [8]), a specific execution phase or the
average registered for each metric throughout the application’s execution.365

The simulator text output, which can be presented in different formats
(-f option), shows the amount of cache ways allotted by each partitioning
algorithm considered for the simulation (as indicated with -a) as well as other
values, such as the per-application slowdown. In using the sample command

14

of Fig. 2, where the -C option is used, a chart will be also generated making370

it possible to quickly compare the effectiveness of the various algorithms
regarding fairness and throughput2. Simulations are performed sequentially
by default, but because they are independent from one another they can
be also launched in parallel (when the -P option is provided) by leveraging
multiple slave processes running on one or multiple machines; details on375

our parallel programming framework can be found in Sec. 4.5. A complete
discussion of PBBCache’s command-line options can be found in [14].

4.2. Determining the slowdown under cache-partitioning
For each workload and partitioning algorithm indicated by the user in the

command line, PBBCache determines the slowdown of each application in a380

workload, which is necessary to assess the degree of fairness and throughput
delivered. Each partitioning algorithm decides how the various LLC cache
ways are distributed among applications in a workload. The cache space
distribution has an important impact on performance, but also determines
the level of bandwidth contention present on the system, which may lead to385

performance degradation. Therefore, to accurately determine the slowdown
of each application both the allotted cache ways and the degree of bandwidth
contention should be considered. Specifically, let A be a workload consisting
of N applications [a1, · · · , aN] running on a system that features a W -way
last-level cache, and under a certain cache-partitioning algorithm part. Our390

simulator approximates the slowdown of each application ai as follows:

Slowdownai = SCpart,ai · SBpart,ai (10)

where SCpart,ai indicates how much the application slows down due to the
amount of cache space granted by part to it (wi ways); SBpart,ai is the slow-
down that ai suffers exclusively due to bandwidth contention (see Sec. 4.2.1).

PBBCache approximates SCpart,ai with the ratio of instructions per cycle395

(IPC) observed for ai when using W and wi ways:

SCpart,ai =
IPCai(W)

IPCai(wi)
(11)

Determining SBpart,ai is a more challenging task for two reasons. First,

2Because the value of the unfairness metric only depends on the maximum and min-
imum slowdown observed across applications, reporting the value of the STP metric as
well is crucial to properly assess the effectiveness of a partitioning approach [8].

15

the amount of memory bandwidth consumed by ai at runtime depends on wi

and on the bandwidth consumption of the remaining programs [11]. So, the
behavior of each application under the cache-way distribution made by part400

has to be taken into consideration to determine SBpart,ai . Second, we found
that this performance degradation (slowdown factor) depends on how sensi-
tive the application is to bandwidth contention. We now proceed to describe
the bandwidth model that PBBCache leverages to approximate SBpart,ai .

4.2.1. Modeling Memory Bandwidth Contention405

To illustrate the effects of bandwidth contention on our experimental
platforms, we conducted several experiments where an application runs si-
multaneously with an increasing number of aggressor benchmarks (i.e., a
bandwidth-intensive synthetic benchmark [32]). For each application we
measured how its bandwidth and slowdown – w.r.t. the solo execution –410

varies as we add more instances of the aggressor application (increasing the
total bandwidth consumption of the workload). To effectively track the slow-
down that comes primarily from memory bandwidth contention in the ex-
periments, we assigned separate cache partitions for the application under
study and for the aggressors. Fig. 3 shows the results for two SPEC CPU2006415

applications gathered on Platform B. (more details on that platform, which
features a 20-core Intel Xeon Skylake processor, can be found in Sec. 6.1.).
Note that Bai denotes the bandwidth consumption of the application when
it runs alone on the platform (constant), and B′

ai
represents its actual band-

width when running with the remaining applications in the workload.420

As shown in Fig. 3, B′ drops as we increase the total bandwidth consump-
tion, whereas the slowdown increases. Clearly, the observed slowdown is not
negligible (e.g., up to 1.12x for omnetpp), so bandwidth-contention related
degradation must be factored in to accurately determine the slowdown for
individual applications. Notably, on Platform A, where we also conducted425

the same experiments we observed considerably higher slowdowns due to
bandwidth contention (up to 1.7x). As pointed out in Sec. 6.2, Platform
A has roughly half the available bandwidth of Platform B, hence the larger
observed slowdowns.

To properly account for bandwidth contention effects, PBBCache employs430

a variant of the probabilistic model proposed by Morad et al. [11]. Essen-
tially, this model enables to approximate – from offline-collected information
of individual applications running alone – (i) the bandwidth that each appli-
cation would exhibit when running simultaneously with others and (ii) the

16

(a) omnetpp (b) libquantum

Figure 3: Memory bandwidth vs. slowdown observed for omnetpp and libquantum as
increasing the total memory bandwidth consumption. The slowdown prediction provided
by Morad’s model (Bai

/B′

ai
) and PBBCache’s model (SBpart,ai

) is also reported.

slowdown that comes exclusively from memory-bandwidth contention. Es-435

sentially to determine (i) for a workload consisting of N applications, the
following system of N + 1 non-linear equations must be solved:

{

B′
2

ai
·

(

1−
1

Bai

)

+B′
ai

·

(

1−
1

T

)

·

(

1−
1

Bai

)

+ 1−
1

T
= 0

}N

i=1

(12)

∑N

i=1
B′

ai
= T (13)

where Bai is the bandwidth observed for each application ai when running
alone on the platform (with the same amount of cache space as that alloted440

in the workload), B′
ai is the actual bandwidth for ai when running simul-

taneously with the other applications in the workload, and T is the total
bandwidth consumption of the workload. Note that Bai , B

′

a,i and T are
normalized to the maximum memory bandwidth of the platform.

To determine the application slowdown due to bandwidth contention (ii)445

Morad’s original model uses the ratio Bai/B
′
a,i, which is based on the ob-

servation that the application bandwidth consumption and its performance
naturally decreases due to contention, and so does its performance. We
observed that this approach to approximate the slowdown is accurate for
highly bandwidth-intensive applications (i.e., over 90% of its pipeline stall450

cycles are dominated by long-latency demand cache misses) such as omnetpp
(see Fig. 3a). However, for the remaining applications, the reduction in mem-
ory bandwidth consumption does not correlate linearly with the performance
degradation, thus obtaining inaccurate slowdown estimates with the model
(such as on Fig. 3b). Essentially, some applications can generate a lot of455

prefetching-related memory requests and cache writebacks operations, which

17

may result in high memory bandwidth consumption; however, a reduction
of the bandwidth consumption of these applications due to contention does
not directly translate into linear performance degradation. To mitigate this
issue in calculating the slowdown of an application ai, PBBCache factors in460

the stall cycles due to long-latency demand cache cycles (MSai) and the total
number of stall cycles (TSai) observed in the solo execution as follows:

SBpart,ai =
TSai +MSai ·

(

Bai

B′
ai

− 1
)

TSai

(14)

4.3. Determining the slowdown for cache-clustering policies

As explained in Sec. 2.3, cache-clustering policies group applications into
clusters; each cluster is assigned a separate cache partition with a certain size.465

To apply the slowdown prediction model presented in Sec. 4.2 (Eq. 10-14), the
simulator must determine first how much cache space each application gets
inside the assigned cluster. This is a challenging task, as the effective cache
space an application gets largely depends on its co-runners in the cluster [1].

Caches in modern processors typically implement a variant of the pseudo-470

LRU replacement policy [1, 33]3. Under these circumstances, the amount of
cache space that an application gets is usually proportional to its rate of
demand (frequency of cache misses) in competition with the rate of demand
of the co-runners [5]. Based on this observation Mukkara et al. [22] proposed
a simple model to rapidly estimate the effect in the cache miss rate curves475

when several applications share a cache, and to approximate the cache space
that each application would get for different way counts. The KPart clus-
tering policy relies on this model [9], which leverages per-application MPKI
(cache Misses Per Kilo-Instruction) tables. Essentially, for each number of
cache ways the model determines the fraction of that cache space that will480

be assigned to each application. Intuitively, the higher the MPKI of an ap-
plication for a certain way count, the more space the application gets when
sharing a portion of cache with that number of ways.

By comparing the prediction provided by Mukkara’s model with the ac-
tual cache usage reported by the Intel Cache Monitoring Technology on our485

experimental platforms, we observed that using the MPKI for the cache space
prediction may lead to substantial inaccuracies that stem from the fact that

3The last-level cache, however, may incorporate specific optimizations to increase ef-
fective associativity without adding ways [33].

18

the MPKI is not a good proxy of the rate of cache demand. Specifically,
two applications with the same MPKI value but different performance (IPC)
have a different rate of cache demand (in terms of misses per cycle). The490

application with the higher IPC in this case has a higher rate of demand,
and so it typically obtains more cache space.

To overcome this shortcoming, our simulator employs a variant of Mukkara’s
model that uses MPKC (Misses Per Kilo Cycles) tables instead of MPKI
tables. We refer to this model as the cache-space model. Note that the pre-495

dicted amount of cache space for an application in a cluster may not be a
multiple of the way size (e.g. 1.5 ways). In this case, linear interpolation (as
in [9, 22]) is used to determine the value of the different metrics (i.e. IPCai ,
Bai , TSai and MSai) required to apply our slowdown-prediction model. So
for example, if an application is expected to receive 1.5 ways of cache space500

inside a certain cluster, the value of each metric would be obtained via linear
interpolation based on the corresponding metric values for 1 and 2 ways,
which can be found in the metrics file.

4.4. Partitioning policies

The current version of the simulator implements five cache-partitioning505

schemes: Equal-Part, UCP [5], Yu-Petrov [10], KPart [9] and LFOC [8].
Our simulator employs the offline-collected metrics found in the metrics file
as input to each partitioning algorithm. Note that real implementations in
the system software of most of these (approximate) algorithms may gather
runtime application metrics online using PMCs.510

The Equal-Part approach is a naive approach, used for comparison pur-
poses, that assigns all applications a separate partition with the same size.

UCP aims at improving fairness and overall throughput by minimizing
the total number of misses incurred by all applications in the workload on
the shared last-level cache. UCP does not attempt to determine the optimal515

solution but instead employs an approximate algorithm referred to as looka-
head [5], which uses as input the MPKI table of each application. This table
stores the application’s MPKI value for any possible cache size.

The algorithm proposed by Yu and Petrov [10] strives to reduce system
bandwidth pressure. To this end, it partitions the LLC so as to minimize520

the total bandwidth. The algorithm relies on per-application bandwidth
consumption measurements with different cache sizes gathered offline.

KPart [9] constitutes a cache-clustering approach designed for through-
put optimization. KPart implements an iterative algorithm that creates and

19

merges application clusters via hierarchical clustering. To decide which clus-525

ters must be merged on each iteration of the loop and how to distribute the
available ways among clusters (inter-cluster way-partitioning), the scheme
leverages the distance metric proposed in [22] as well as the UCP approach [5].
The application of UCP and the evaluation of the distance metric relies on
the ability to determine MPKI tables and IPC tables (i.e. number of Instruc-530

tions Per Cycle for different cache sizes) online for each application.
LFOC [8] is a lightweight cache-clustering policy that seeks to enforce

fairness while providing acceptable throughput. It was the first partitioning
scheme whose design process was guided with PBBCache. LFOC classifies
applications into three classes based on its cache behavior: light sharing,535

streaming and cache sensitive. LFOC reserves up to two single-way cache
clusters for streaming programs. The remaining ways are distributed among
cache-sensitive applications, which are then mapped to separate cache par-
titions whose size is determined via UCP, using as input the per-application
slowdown curve (i.e., IPC-based slowdown registered for different cache ways).540

Light sharing applications are distributed across partitions.

4.5. Notes on the simulator implementation

PBBCache was primarily designed to enable rapid prototyping and eval-
uation of cache-partitioning approaches. To increase programming produc-
tivity, it has been completely implemented in Python, and relies on libraries545

available for multiple operating systems. Hence it is a multi-platform tool.
To leverage parallelism in the simulator implementation we use ipyparal-

lel [34]. This framework, which relies on Python’s multiprocessing module,
enables us to perform master-slave distributed-memory parallel processing.
The main features of ipyparallel are as follows:550

• Master and slave (aka engine) processes do not share memory.

• The framework allows the master process to submit work (tasks) to be
executed by one or several engines. Two complementary mechanisms
are available to do so: the Load Balanced and the Direct view. With
the first one, the set of engines is treated as a pool of workers; the555

programmer does not have to explicitly determine which engine ulti-
mately executes the task. Instead, an underlying scheduling algorithm
is in place to assign tasks to engines dynamically and to quickly as-
sign tasks to idle engines. The second mechanism, by contrast, exposes
individual engines to the programmer. Regardless of the mechanism560

used, ipyparallel allows the master to submit tasks in a synchronous

20

or an asynchronous way (i.e., in the latter the master does not remain
blocked until the task or the set of tasks submitted completes).

• In ipyparallel ’s programming model, engines do not communicate with
each other. However, other Python modules can be used to establish565

explicit inter-engine communication. Because this kind of communi-
cation is required in PBBCache, we turned to the ZeroMQ messaging
library [35], which is also used in ipyparallel’s implementation.

The ipyparallel framework allows applications based on it to seamlessly
distribute the computation across cores present in one or several machines,570

while maintaining a single implementation. Notably, using this approach
to leverage parallelism (i.e., multiple processes that cooperate with one an-
other) in our simulator provides much better performance and scalability
on a shared-memory machine than using an ad hoc Python multithreaded
application. This stems from the fact that, due to implementation issues575

in CPython –the reference implementation of the Python interpreter–, the
truly parallel execution of multiple CPU-bound threads is not allowed within
the interpreter [36]. The execution of CPU-bound threads is instead serial-
ized, thus making multithreading an unsuitable choice for applications like
our simulator. We should highlight that Jython –an alternative Python im-580

plementation written in Java– is not subject to this multithreaded-related
issue. Unfortunately, its JyNi compatibility layer [37], which enables the
utilization of a few Python modules written for CPython from Jython, does
not currently support the pandas or matplotlib modules. Because these two
widely-used modules are key building blocks of our open-source simulator [14]585

for seamless visualization and data manipulation, we opted to use CPython,
the default Python implementation.

Finally, it is worth noting that, to solve the set of non-linear equations re-
quired for the evaluation of our bandwidth-contention model (see Sec. 4.2.1,
we use the sympy library. This library offers a high-level and flexible mech-590

anism to specify sets of equations in the source code; hence, making it easier
to others to create and test their own models.

5. Determining the optimal solution

This section describes the features of the various B&B algorithms used
by PBBCache to determine the solution of the Opt-STP and Opt-Unf op-595

timization problems. Currently, four B&B algorithms exist: Opt-STP-S,
Opt-STP-P, Opt-Unf-S and Opt-Unf-P. The name of each algorithm encodes

21

Figure 4: Comparison of various approximate algorithms and the optimal solution.

the optimization problem the algorithm solves (Opt-STP or Opt-Unf) and
indicates whether the algorithm is sequential or parallel (via the -S and -P
suffixes, respectively). Opt-STP-S and Opt-Unf-S follow the structure of the600

sequential B&B algorithm depicted in Alg. 1. They are primarily used to as-
sess the effectiveness of the proposed bounding functions, and as a baseline
to quantify the scalability of the corresponding parallel version.

All these B&B algorithms have several things in common. First, they
all use best-first search. Second, the sequential and parallel algorithms for605

the same optimization problem share the same bounding function and the
same heuristic approach to determine the initial solution. Third, despite the
fact that we identify four B&B algorithms – for the sake of clarity in the
explanation – two generic functions of our simulator are used to implement
them. Among other things, these two functions accept as a parameter the610

bounding function to be applied and a flag that indicates whether it is a
maximization or minimization problem. This allows us to implement the
Opt-STP-P and Opt-Unf-P algorithms by invoking a single generic function;
the same applies to Opt-STP-S and Opt-Unf-S. Note that this also makes it
easier to extend the PBBCache with support for optimal cache partitioning615

under other optimization objectives (e.g., energy efficiency minimization).
In the remainder of this section we first discuss the approach to determine

the initial solution (Sec. 5.1), and then proceed to present the bounding func-
tions we use for the Opt-STP and Opt-Unf optimization problems (Sec. 5.2).
Next, we describe the generic distributed-memory parallel approach used by620

Opt-STP-P and Opt-Unf-P (Sec. 5.3). Finally, we discuss different strategies
to determine the solution of the optimal cache-clustering problem (Sec. 5.4).

5.1. Initial solution for B&B

To find a suitable strategy to determine the initial solution in the B&B al-
gorithms, we considered 3 simple partitioning approaches: Equal-Part, UCP625

22

[]

[1] [2] [3]

[1,1] [1,2] [1,3]

[1,1,1] [1,1,2] [1,1,3]

[1,1,1,3] [1,1,2,2] [1,1,3,1]

[1,2,1] [1,2,2]

[1,2,1,2] [1,2,2,1]

[1,3,1,1]

[2,1] [2,2]

[2,1,1] [2,1,2]

[2,1,1,2] [2,1,2,1]

[2,2,1,1]

[3,1,1,1]

Figure 5: Search space tree for the optimal cache-partitioning problem with 4 applications
and 6 ways. Eq. 9 indicates the different cases to be considered in expanding each node
based on W (remaining ways) and N (remaining applications). A node has only one child
(leaf) when W=N or N=1. Otherwise it has as many as W−N+1 children, that come
from inserting a number ∈ {1 .. W−N+1} at the end of the node’s list.

and UCP-Slowdown. The first two schemes were described in Sec. 4.4; UCP-
Slowdown is a variant of UCP [5] (approximate algorithm) that uses per-
application slowdown tables (i.e. slowdown for different number of ways)
instead of per-application MPKI tables. In using slowdown tables, UCP-
Slowdown attempts to minimize the aggregate slowdown across applications630

(summation of slowdowns), by considering exclusively the performance degra-
dation that comes from cache sharing (bandwidth contention is ignored).

Fig. 4 illustrates how the three approaches perform relative to the opti-
mal solution for the Opt-STP and Opt-Unf optimization problems when using
workloads with different application counts. Each point in the chart repre-635

sents the worst value obtained for the metric in question (normalized Unfair-
ness or STP) across 10 randomly generated workloads with the same applica-
tion count (indicated on the y-axis). In light of the results, we opted to choose
UCP to obtain the initial solution in the Opt-Unf-S and Opt-Unf-P B&B al-
gorithms, as it exhibits the closest behavior to the solution of the Opt-Unf640

optimization problem. By contrast, for the Opt-STP-S and Opt-STP-P al-
gorithms we employ UCP-Slowdown instead, as the STP it provides is in less
than a 0.3% range of that of Opt-STP, thus clearly outperforming the other
approaches. Note that both UCP and UCP-Slowdown, employ the lookahead
algorithm, which, as reported in [5] has a worst-case time complexity of W 2

2
,645

where W denotes the total number of cache ways.

5.2. Bounding functions

Before describing the bounding functions, we introduce the notation used
to represent solutions in the optimal cache-partitioning problem. Fig. 5 shows
the corresponding search-space tree for 4 applications and 6 ways. The leaf650

nodes of the tree represent the complete, feasible solutions available; inter-

23

mediate nodes represent partial solutions. For simplicity, each solution is
represented as a list where each i-th item indicates the number of ways al-
lotted to application i. So for example, the solution associated with the
leftmost node of the tree is [1,1,1,3], namely, the first three applications655

in the workload get 1 way and the last one gets 3.
Henceforth, we will refer to the bounding function used by the OPT-STP-

S/P algorithms as bound stp, and to that of the OPT-Unf-S/P algorithms
as bound unf. Both bounding functions accept as a parameter the partial
solution (PS) associated with the node being explored, as well as the number660

of remaining ways to assign (R). The bound stp function determines an upper
bound of the STP value for the best solution for throughput reachable from
PS; bound unf provides a lower bound of the Unfairness metric for the best
solution for fairness reachable from PS. Several factors make determining
these bounds a very complex problem. First, both metrics (see Sec. 2.1) are665

defined in terms of the slowdown of each application in a workload. Note that
an application’s slowdown depends on both the number of cache ways allotted
to it, and on the degree of bandwidth contention on the system, which, in
turn, varies with the distribution of the remaining cache ways among the
rest of applications in the workload. Second, determining the fraction of the670

slowdown that comes from bandwidth contention alone entails solving the
set of non-linear equations of our model (Eq. 12 and 13). In our setting, this
may take hundreds of milliseconds, so exploring multiple candidate solutions
reachable from PS to determine a bound is largely impractical; the costly
bandwidth model would have to be applied multiple times (one for each675

candidate solution) thus incurring the associated overhead.
In defining the bounding functions, we rely on the observation that the

slowdown of an application decreases as we assign more cache ways to it.
Hence, the higher the number of ways available on the platform (W), the
higher the value of the STP metric; a higher way count also contributes to680

reducing unfairness in most cases. Due to the complexity of determining the
bounds, coupled with the high cost associated with the bandwidth model
evaluation, we opted to relax the cache partitioning problem (just for this
purpose) by removing the constraint on the total number of ways that can
be allotted. Specifically, both bounding functions rely on determining an685

ideal solution reachable from PS that optimizes STP. The ideal solution is a
feasible solution for the relaxed cache-partitioning problem, where the total
number of ways assigned to the applications may be greater than W .

The ideal solution is obtained by allotting each and every application not

24

considered in the partial solution PS, the maximum amount of ways found690

in any feasible solution reachable from PS. Specifically, let S be the num-
ber of applications to be considered for the distribution of those remaining
ways. In any possible distribution of R ways, any application gets R−S +1
ways at the most. Hence, the ideal solution results from completing PS by
assigning R− S + 1 ways to the remaining R applications. For example, let695

us consider a system consisting of a 10-way cache and a workload made up
of four applications. For PS=[3,2], the ideal solution would be [3,2,4,4].

The upper bound provided by bound stp is the STP value of that ideal
solution. To determine a lower bound in bound unf for the Unfairness metric
–defined in Eq. 3– we have to follow a different approach. A trivial lower700

bound L for a node can be obtained as follows: L = M
m
, where M and m

are the maximum and minimum slowdowns, respectively, observed across
applications in PS (partial solution of the node). The unfairness of any
solution reachable from PS will be ≥ L since, in assigning ways to the rest of
applications, the new maximum slowdown will be≥ M and the new minimum705

slowdown will be ≤ m. Notably, bound unf determines a less optimistic lower
bound L’ defined as M ′

m
, where M ′ is the maximum slowdown found in the

aforementioned ideal solution (i.e., PS filled with R − S + 1 values). Note
that L′ ≥ L, and L′ is still a lower bound, as the ideal solution guarantees the
lowest possible slowdown for the remaining applications, hence minimizing710

the ratio, as we keep the same denominator m.
Despite the simplicity of the bounding approach, our experimental results

in Sec. 6.3 reveal that the bound stp and bound unf functions lead to very ef-
fective pruning. Moreover, because the bandwidth model has to be evaluated
just once, the approach is affordable in terms of computational cost.715

5.3. Parallel distributed-memory B&B algorithms

The Opt-STP-P and Opt-Unf-P algorithms follow the same parallel strat-
egy. For the sake of simplicity in the explanation, we will describe the strat-
egy assuming a minimization problem, as it is done in [24].

We begin by discussing the main challenges that arise in attempting to720

solve the Opt-Unf and Opt-STP problems via parallel B&B. First, as shown
in Fig. 5, the search space tree is largely unbalanced. A possible approach to
parallelizing the search consists in breaking down the full tree into subtrees
– preferably with a similar node count, and processing these subtrees in par-
allel. However, this approach does not necessarily provide good scalability725

25

due to the unpredictable effect of pruning; the number of nodes of a par-
ticular subtree that ultimately have to be processed depend on the pruning
effectiveness in that area of the search space. Therefore, considering a entire
subtree as the work unit for parallel processing does not constitute a good
approach, as it leads to load imbalance. Secondly, calculating the cost of a730

solution (leaf node of the tree) or determining the lower bound of any node
entails solving the set of non-linear equations of the bandwidth model, which,
as stated earlier, may have a substantial overhead (in the order of hundreds
of ms.). Note that when processing a node of the tree, these tasks usually
have to be performed several times. Because this kind of processing has735

enough computational complexity, treating one individual node (rather than
a subtree) as the work unit for parallel computation constitutes a promising
approach. Our strategy is based on this idea.

Our distributed-memory parallel approach follows the master-slave pat-
tern. In our B&B approach the work unit to be processed by slave processes740

is the subnode; we use this term to denote the processing that has to be
done for a subset of children of a certain node in the tree. Recall that in
processing a node, the B&B method has to determine the lower bound for
all of its children; children nodes with a lower bound greater than the up-
per bound are pruned, and the remaining nodes are either considered when745

updating the upper bound (leaf nodes) or left for further processing. We
observed that using the node as the work unit leads to load imbalance, as
the higher the number of children – which largely varies across nodes of the
tree – the higher the computational cost associated with processing the node.
To overcome this problem, we divide the node-level processing into groups of750

children, each one with a children count not greater than max children – a
configurable parameter of our algorithm. Specifically, a node consisting of C
children is divided into ⌈ C

max children
⌉ subnodes. Breaking down the node-level

processing in this manner allows us to create smaller tasks with similar gran-
ularity, which enable a more even distribution of the work especially when755

pruning is working very effectively (just a few nodes to process). To illus-
trate this fact, Figs. 6a and 6b show the granularity of tasks that come from
using the node and the subnode as the work unit. Clearly, using subnodes
leads to a higher number of smaller, more uniform tasks. This contributes to
reducing load imbalance and improves performance. The default value of the760

max children parameter is 3, which makes it possible to obtain fine-grained
tasks but with enough computational complexity so that it is worth it to
send them to slaves for processing even on a remote machine (like the setting

26

1

2

3

4

0 s 7.12 s

(a) Node-based processing

1

3

4

0s 5.41s

2

(b) Subnode-based processing

Figure 6: Traces for Opt-STP-P obtained with Paraver [38] (6 applications and 4 slave
processes). Tasks in blue denote node (a) and subnode (b) processing; idle periods appear
in gray; light-green tasks represent the parallel initialization of the subnode queue.

explored in Sec. 6).
Algorithms 2 and 3 outline the behavior in a minimization B&B of the765

master process and the subnode processing by a slave. The master submits
subnodes to the slave pool; upon completion of a subnode processing request
the slave process returns a list of promising child subnodes back to the master
– to be processed later. The distributed algorithm terminates when there are
no subnodes left to process. Because master and slave processes do not share770

memory, each process keeps a local copy of the upper bound; when any pro-
cess finds a better solution, the new identified upper bound is notified to the
rest of the processes by using the publish-subscribe communication pattern
of the ZeroMQ messaging library [35]. Specifically, each process acts as an
independent publisher and, in turn, is subscribed to the notifications issued775

by the remaining processes. Upon receiving a notification, if the remote up-
per bound is better than the local one, the process updates the local upper
bound, which will be used for pruning from then on. Note that using Ze-
roMQ for this task provides a simple and efficient implementation, and does
not create additional library dependencies for our simulator, as ipyparallel’s780

implementation already relies on ZeroMQ.
The master process maintains a priority queue of subnodes yet to be sub-

mitted (line 8), and a list with pending subnodes currently being processed
by slaves (line 13). Subnodes in both data structures are sorted in ascending
order by its lower bound, so as to perform pruning operations more efficiently.785

To follow a best-first approach, the most promising subnode, located at the
front of the queue is submitted first. When the upper bound is updated in
the master process unpromising subnodes in the queue are simply pruned by
removing them from the queue (line 17). The master may also prune un-
promising subnodes being currently processed by slaves; the corresponding790

task in the slave process is immediately canceled remotely and the associated
subnode is removed from the pending list (line 20).

27

Algorithm 2: Simulator’s master B&B code.
Input: A is the workload considered for cache partitioning, W number of cache ways available

on the platform, slave count is the number processes in slave pool

1 incumbent← initial solution for A provided by heuristic algorithm (see Sec. 5.1)
2 upper bound← incumbent.Cost();
3 U ← slave count ∗ initial load ; queue limit← slave count ∗ 2 ; pending ← []; prio q ← []
4 Send A and other global data to slave pool

// Initialization of the subnode queue (prio q)
5 NS← unroll a number of nodes no smaller than U from A’s tree via breadth-first traversal
6 Calculate lower bound in parallel for each node Ni ∈ NS using slave pool

7 Remove nodes from NS whose lower bound≥ upper bound (those will not be processed)
8 foreach node ni in NS do prio q.concat(break into subnodes(ni,W,max children)) end

9 while !prio q.isEmpty() || !pending.isEmpty() do
// Submit subnodes to the slave pool asynchronously

10 while !prio q.isEmpty() && len(pending) ≤ queue limit do
11 subnode← pop highest prio subnode from prio q

12 ptask ← slave pool.async submit(subnode, subnode.lower bound)
13 pending.append(ptask, subnode.lower bound)
14 end
15 completed tasks← Remain blocked until at least one task in pending list completes
16 (local ub, local inc)← (upper bound, incumbent)

// Retrieve remote upper bounds (ZeroMQ), update and prune if necessary

17 (incumbent, upper bound)← process remote info(prio q, pending, local ub, local inc)
// Process completed tasks

18 foreach ti in completed tasks do
19 foreach subnode sj in ti.promising child subnodes() do append sj to prio q if

sj .lower bound < upper bound end
20 Remove ti from pending
21 end
22 end

As shown in Alg. 2, the master process continuously submits subnodes
to the slave pool asynchronously. The load balancing algorithm of the ipy-
parallel framework [34] automatically maps work to specific slaves so as to795

balance the load in the slave pool. The submission of subnodes is temporarily
stalled by the master when the total number of subnodes being processed by
slaves exceeds twice the number of slave processes. We found that increasing
the number of pending subnodes beyond that point leads to submitting a
higher number of potentially unpromising subnodes, that would have been800

otherwise pruned locally by the master, rather than canceled. This degrades
performance as it may keep slave processes busy for a longer period of time
doing useless work. Conversely, considering fewer pending subnodes causes
slaves to go idle more frequently, as they wait more often for the master
to submit new work, thus negatively impacting scalability. Therefore, our805

choice of the maximum number of pending tasks provides a good trade-off
between pruning effectiveness and scalability.

Finally, we zoom in on the initialization of the subnode queue (lines 3-8 –

28

Algorithm 3: Simulator’s slave B&B code for subnode processing.
Input: A: workload considered for cache partitioning; W number of cache ways available on

the platform; subnode to be processed, LB: lower bound of subnode. (Note that
upper bound and incumbent are global variables, but local to each slave process)

1 promising ← [] // Initialize list of promising subnodes to be returned to master

2 if subnode.isSolution() || subnode.ReachableSolutions() == 1 then
3 (solution, cost)← subnode.getSolution()
4 if cost < upper bound then
5 (incumbent, upper bound) ← (solution, cost)
6 zeromq publish(incumbent, upper bound)
7 end
8 else
9 foreach child in subnode.getChildren() do

10 (local ub, local inc)← (upper bound, incumbent)
// Retrieve remote upper bounds (ZeroMQ), update and prune if necessary

11 (incumbent, upper bound)← process remote info(promising, [], local ub, local inc)
12 if LB > upper bound then return []
13 if child.isSolution() || child.ReachableSolutions() == 1 then
14 (solution, cost)← child.getSolution()
15 if cost < upper bound then
16 (incumbent, upper bound) ← (solution, cost)
17 zeromq publish(incumbent, upper bound)
18 end
19 else
20 lower bound← bounding function (child);
21 child.setLowerBound(lower bound);
22 if lower bound < upper bound then
23 (incumbent, upper bound) ← (solution, cost)
24 promising q.concat(break into subnodes(child,W,max children))
25 end
26 end
27 end
28 end
29 return promising

Alg. 2). A simple way to initialize it would be to insert the root node of the
tree only, as done in the sequential algorithm depicted in Alg. 1. However,810

using this approach here degrades scalability substantially as it does not keep
all slave processes busy from the beginning of the execution. Specifically, it
takes some time to expand enough subnodes to make this happen. Our
algorithm instead unrolls a certain number of tree nodes via breadth-first
traversal (line 5). In doing so, the master builds a list of nodes that belong815

to a certain level of the tree l or to two consecutive levels (l and l + 1);
nodes in the upper levels of the tree (< l) are automatically discarded by
the B&B algorithm so as to remove the substantial overhead associated with
the evaluation of the bounding function in the master process. Nodes on the
list are submitted to slave processes so as to compute their lower bound in820

parallel; nodes whose lower bound is higher than the upper bound are pruned.

29

Finally, promising nodes are broken down into subnodes (line 8), which are
used to populate the queue. Note that the number of nodes unrolled is no
smaller than initial load ∗ slave count, where slave count denotes the
number of slave processes, and initial load is a configurable parameter of825

the algorithm, whose default value is 2. That value typically ensures that
the queue is initialized with enough subnodes to keep slaves busy.

5.4. Determining the optimal cache-clustering solution

To determine the optimal clustering for a workload A, we must consider
all cluster sets of A. For each cluster set, the optimal distribution of the830

cache space among clusters must be determined. The optimal solution is the
best one observed across cluster sets.

In this problem, each possible cluster set can be explored in parallel. In
turn, we may also exploit parallelism to determine the optimal cache parti-
tioning for a given cluster set. Exploiting these two complementary levels of835

parallelism, however, is not possible with ipyparallel, as nested parallelism
is not currently supported. PBBCache implements a master-slave algorithm
that evaluates multiple cluster sets in parallel. The master generates every
possible cluster set for the workload and submits them to the slave pool for
processing by leveraging a mechanism to restrict the number of pending tasks840

similar to the one described in Sec. 5.3. Slaves employ the Opt-Unf-S or Opt-
STP-S algorithms to sequentially determine the optimal cache partitioning
for a given cluster set under the fairness and STP optimization objectives,
respectively. Finally, it is worth highlighting that the exploitation of the
outermost level of parallelism (what we do here) is generally more effective845

than considering the inner one, because in many of the cluster sets that
must be explored, the corresponding search space tree for the optimal cache-
partitioning problem is very small. Processing these small trees in parallel
does not bring substantial performance gains relative to doing it sequentially.

6. Experiments850

6.1. Experimental Setup

To carry out the evaluation of various aspects of the PBBCache simulator
we conducted experiments on different platforms with GNU/Linux, and using
the 4.9.116 version of the Linux kernel. Table 1 summarizes the features of the
four hardware platforms we used, which include different models of the Intel855

Xeon processor family. Essentially, Platforms A and B, which are the only
ones equipped with Intel CAT, were used to extract performance information

30

Table 1: Features of the various platforms used

Platform Name A B C D

Proc. Model Xeon E5-2620 v4 Xeon Gold 6138 2 x Xeon E5-2695 v3 2 x Xeon E5-2650
Proc. Frequency 2.1GHz 2.0 GHz 2.3 GHz 2.0GHz

Core count 8 20 28 16
LLC (L3) cache 20MB/20-way 35MB/11-way 35MB/20-way 20MB/20-way
Main Memory 32GB@2133 MHz 96GB@2666 MHz 64GB@1600 MHz 64GB@1600 MHz
CAT enabled Yes Yes No No

from various benchmarks to be used as input for the simulator. We also used
these two platforms to carry out the simulator validation (Sec.6.2). Platforms
A and B integrate processors with different microarchitectures (Broadwell860

and Skylake, respectively), different organizations of the cache hierarchy (e.g.
Platform A uses an inclusive LLC whereas B does not) and different cache
partitions granularities (i.e. the smallest partition we can create in B – 2.5
megabytes – is 2.5 times bigger than on A).

To assess the effectiveness of pruning in our B&B algorithms (Sec. 6.3),865

and measure the scalability of the parallel B&B strategy on one node (Sec. 6.4),
we turned to Platform C, which features more cores than Platforms A and
B. Finally, we experimented with a cluster consisting of four 16-core nodes
(each one with the features shown in Table 1 for Platform D) to demonstrate
that the simulator can be effectively executed on a cluster as well.870

6.2. Validation of the simulator

For the validation experiments we used 25 randomly generated work-
loads consisting of 6 and 8 programs each. In building the workloads, which
exhibit a different degree of shared-resource contention, we used 25 differ-
ent benchmarks from SPEC CPU. For each workload we collected the STP875

and Unfairness values provided by PBBCache for various partitioning algo-
rithms: UCP [5], Yu-Petrov [10], Equal-Part, KPart [9] and LFOC [8]. We
also gathered the corresponding values for the optimal solutions provided
by PBBCache for the Opt-Unf and Opt-STP problems. To validate these
results we compared them with those observed when applying the same par-880

titioning statically on the real machine where the corresponding performance
information for the simulation was obtained (Platforms A and B).

For the experiments on the real machine, we rely on the PMCTrack
tool [39], which makes it possible to establish per-process cache partitions
from user-space on systems equipped with Intel CAT. Essentially, prior to the885

execution of the workload under a certain partitioning approach we run the
simulator to retrieve the associated cache partitions, and map each applica-

31

0.7 0.8 0.9 1.0 1.1 1.2
Real Unfairness

0.7

0.8

0.9

1.0

1.1

1.2
Si

m
ul

at
or

 U
nf

ai
rn

es
s

0.90 0.93 0.95 0.97 1.00 1.02 1.05 1.07 1.10
Real STP

0.90

0.93

0.95

0.97

1.00

1.02

1.05

1.07

1.10

Si
m

ul
at

or
 S

TP

(a) Platform A

0.7 0.8 0.9 1.0 1.1 1.2
Real Unfairness

0.7

0.8

0.9

1.0

1.1

1.2

Si
m

ul
at

or
 U

nf
ai

rn
es

s

0.90 0.93 0.95 0.97 1.00 1.02 1.05 1.07 1.10
Real STP

0.90

0.93

0.95

0.97

1.00

1.02

1.05

1.07

1.10

Si
m

ul
at

or
 S

TP

(b) Platform B

Figure 7: Real vs. simulator-provided values for the STP and Unfairness metrics on
platforms A (left) and B (right), normalized to the results of the Equal-Part scheme.

tion in the workload to its corresponding partition. Note that, for simplicity,
the partitions remain the same (static) throughout the workload’s execution.
We ensure that all applications in the mix are started simultaneously and890

when one of them terminates it is restarted repeatedly until the longest ap-
plication in the set completes three times. We then measure unfairness and
STP, by using the geometric mean of the completion times for each program.

Figs. 7a and 7b show the comparison of the real vs. simulator-provided
values for the STP and Unfairness metrics on platforms A and B, respec-895

tively. Both metrics have been normalized to the results of the Equal-Part
scheme. We observe that the Unfairness and STP values provided by the
simulator closely track those of the actual platforms. Specifically, the aver-
age error rate observed on Platform A (Broadwell architecture) is 3% and
1% for Unfairness and STP respectively, and on the Platform B (Skylake900

architecture) is 2% and 0.4%. We found that the main reason behind the
less accurate simulations on Platform A has to do with inaccuracies in the
bandwidth model for some bandwidth-intensive applications. On this plat-
form, the theoretical maximum memory bandwidth is 68.3GB/s, whereas on
Platform B this bandwidth is 128GB/s. As a result, bandwidth contention is905

32

substantially higher on the first platform. In particular, these model inaccu-
racies are due to the fact that PBBCache was fed with the average bandwidth
registered across the execution to predict the slowdown due to contention.
In some cases, this average does not represent the benchmark behavior in
certain program phases where we find spikes in bandwidth consumption that910

are substantially higher than the average. Consequently, the actual slow-
down is underpredicted due to serious bandwidth contention in these cases,
leading to lower Unfairness and STP values.

A potential way to address this issue, which did not prevent us from gath-
ering good predictions on Platform B, would be to make PBBCache aware of915

the different program phases of bandwidth-intensive applications. Because
phase transitions do not occur at the same time in multiple programs, this
would require to break down the whole workload execution into stages of
stable behavior across applications, and apply the particular partitioning
scheme on each stage. Unfortunately, this approach would make it difficult920

to obtain a solution in a reasonable amount of time, which stands in contrast
with the main goal of the simulator: a tool for rapid prototyping and evalu-
ation. Note that to determine an exact solution the B&B algorithm for the
Opt-STP (or Opt-Unf) non-linear optimization problem would have to be
invoked for each execution stage one after another, as the progress each ap-925

plication makes (which must be determined to detect the next phase change)
depends in turn of the partitioning applied in the previous stage. In our ear-
lier work [8] we demonstrated that PBBCache proves very useful in aiding in
the design of novel partitioning algorithms; the aforementioned innacuracies
associated with bandwidth-intensive applications did not prevent us from us-930

ing PBBCache to guide the design process of the LFOC approach [8], which
outperforms previous fairness-aware partitioning proposals.

Fig. 8 shows the accuracy of the simulator predictions on Platforms A
and B for some representative workloads, which summarize the trends ob-
served in all our experiments. The results are reported separately for each935

individual partitioning scheme. Clearly, PBBCache is capable of capturing
the relative benefit in STP and Unfairness that a partitioning scheme obtains
over the others, and enables us to identify the best performing schemes in
each scenario. Notably, dividing the LLC into same-sized partitions (Equal-
Part) does not constitute a good approach regarding fairness or throughput,940

as, in doing so, we do not cater to the degree of cache sensitivity of each
application. Yu-Petrov’s algorithm provides better results in a few cases
but is also subject to high fairness/throughput degradation. Moreover, we

33

Equal-Part
Kpart

Opt-STP
Opt-UNF

UCP
Yu-Petrov

LFOC
Simulator

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

al
ize

d
UN

F

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0.90

0.95

1.00

1.05

No
rm

al
ize

d
ST

P

(a) Platform A

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

al
ize

d
UN

F

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0.90

0.95

1.00

1.05

1.10

No
rm

al
ize

d
ST

P

(b) Platform B

Figure 8: Real vs. simulator-provided values for the STP and Unfairness on Platforms A
and B, normalized to the results of Equal-Part.

34

3/STP
3/Unf

4/STP
4/Unf

5/STP
5/Unf

6/STP
6/Unf

7/STP
7/Unf

8/STP
8/Unf

65

70

75

80

85

90

95

100
Pr

un
in

g
Ra

te
 %

(a)
3/STP

3/Unf
4/STP

4/Unf
5/STP

5/Unf
6/STP

6/Unf
7/STP

7/Unf
8/STP

8/Unf

100

101

102

Co
m

pl
et

io
n

tim
e

(s
ec

on
ds

)

(b)

Figure 9: Pruning rate (a) and completion time (b) for sequential B&B algorithms under
different sets of workloads. Labels X axis, with format n/target indicate the number of
applications in the workload (n) in the corresponding set, and the optimization metric.

observe that UCP and KPart are more effective in general, but are still far
from the optimal cache-partitioning solutions Opt-Unf and Opt-STP in most945

cases. As pointed out in previous work [4, 8], cache-clustering policies can
outperform strict cache-partitioning policies. This is the case for workloads
V9-V12 on Platform B, where the KPart cache-clustering policy provides
better throughput and fairness than Opt-STP and Opt-Unf. Finally, LFOC
is able to obtain lower unfairness values than the other approaches across950

the board, and also reaps higher or comparable throughput (STP) to many
other policies in most cases. To sum up, cache-clustering policies are in gen-
eral superior to strict cache-partitioning approaches on recent Intel server
platforms, where the smallest cache partitions that can be created have a
relatively coarse granularity (e.g., 1 megabyte on Platform A).955

6.3. Effectiveness of the bounding functions Opt-STP and Opt-Unf

One the key aspects of the proposed B&B algorithms is the effective-
ness of the bound stp() and bound unf() bounding functions, described in
Sec. 5.2, and used for the Opt-STP and Opt-Unf problems, respectively. To
compare the efficacy of both bounding functions and analyze their impact in960

performance we randomly built 66 workloads consisting of a number of ap-
plications that range between 3 and 8 (the core count of Platform A). Eleven
workloads were considered for each application count. For these experiments
we fed PBBCache with data gathered on Platform A where the number of
possible solutions is substantially higher than on Platform B (see Sec. 2.2).965

Fig. 9 shows the pruning rate and the completion time for the different
workload sets (one for each application count) and optimization metrics (i.e.
STP and Unfairness) obtained by the Opt-STP-S and Opt-Unf-S sequential
B&B algorithms. The pruning rate is defined as the percentage over the total

35

number of nodes in the search space tree that were discarded by pruning.970

The results reveal that the pruning rate largely depends on the nature of the
workload. For example, for 3-application workloads under Opt-STP-S, the
pruning rate ranges between 65% and 94.7%. We also observe that, as we
increase the number of applications in the workload, the variability decreases,
and the average pruning rate improves substantially; it is greater than 96.7%975

when the application count is >5. This indicates that the effectiveness of the
bounding functions increases with the problem size, which is a good property
of our proposed B&B algorithms.

As expected, the pruning rate has an enormous impact on the completion
time. In particular, the slight superiority of bound unf() over bound stp() for980

6-8 applications (see Fig. 9a) leads to substantially smaller completion times
due to pruning (Fig. 9b). Notably, because the number of nodes in the search
space tree – shown in Table 2 – grows exponentially with the application
count, a small increase in the pruning rate may have a tremendous impact
on the completion time. Specifically, an increase of 0.5% of the pruning rate985

for an 8-application workload can accelerate the execution by a factor of
2x. All in all, we observe that for the workloads explored the Opt-Unf-S
algorithm provides the optimal solution in less than 2 minutes, and the Opt-
STP-S algorithm in less than 9 minutes. Given the good scalability of the
parallel B&B approach (as we discuss next) these completion times can be990

reduced substantially with the parallel B&B algorithms.

Application count 3 4 5 6 7 8

Number of nodes 357 2056 8295 24955 58071 106963

Table 2: Number of nodes of the search space tree for different workloads on Platform A.

6.4. Scalability of the distributed-memory parallel B&B strategy

6.4.1. Single-node results

To assess the scalability of proposed parallel B&B strategy on a single
multicore server we used Platform C (28 cores, divided into two sockets, as995

shown in Table 1). Specifically, we focused on the study of a subset of the
workloads explored in Sec. 6.3 where the Opt-STP-S (sequential) algorithm
takes more than one minute to find the optimal solution.

Fig. 10 shows the speedup achieved with the Opt-STP-P algorithm for
the different application mixes explored (consisting of 6, 7 and 8 applications,1000

respectively) as we vary the number of cores from 1 to 28. As stated in
Sec. 5.3, the max children and initial load parameters of the algorithm

36

(a) 6 applications (b) 7 applications (c) 8 applications

Figure 10: Scalability for different workload sets consisting of 6, 7 and 8 applications

were set to 3 and 2, respectively. Note that the speedup is reported relative
to the completion time of the sequential B&B algorithm. The linear speedup
was also included in the charts for comparison purposes.1005

The results reveal that the maximum speedup registered is 25.2x (W55
with 28 cores), which corresponds to a parallel efficiency of 0.9. Overall,
we also observe that the speedup of our parallel approach gets closer to the
linear speedup as the workload size increases. This is a positive trend, since
the parallel strategy becomes more effective in utilizing multiple cores as the1010

sequential B&B algorithm begins to exhibit substantially longer completion
times (up to 9 minutes as shown in Fig. 9b for the STP metric). Hence,
by leveraging parallelism on this platform our proposed simulator is able to
determine the optimal solution for any of these workloads in less than 34s.
Finally, we should highlight that the reason of the lower scalability observed1015

for 6-application workloads (Fig. 10a) has to do with the fact that at the end
of the execution of the parallel algorithm the number of remaining subnodes
to process is smaller than the number of cores, leaving a few cores idle for a
short time period of time. As the problem size increases (higher application
count) the fraction over the total execution affected by this imbalance sce-1020

nario is smaller, which provides better scalability. We next discuss further
this aspect as it also becomes apparent in our multi-node experiments.

6.4.2. Multi-node results

For the evaluation of the parallel B&B strategy using multiple computing
nodes, we used a cluster consisting of four identical 16-core server systems1025

that follow the specifications of Platform D, as described in Table 1. Fig. 11a
reports the speedup observed for different workloads as we increase the num-
ber of cluster nodes from 1 to 4 (i.e. from 16 to 64 cores).

The results reveal that the parallel B&B strategy is capable of obtaining
substantial performance gains relative to the sequential approach by effec-1030

tively utilizing multiple cores on different nodes. We also observe that the

37

(a)
(b)

Figure 11: (a) Speedup for different workload sets using from one to four nodes (16 cores
each) on Platform D. (b) Excerpt of the execution trace for W66 with 64 cores. Note that
idle periods are denoted in gray as in traces shown in Sec. 5.3

speedup achieved for up to two nodes (32 cores) is very close to the linear
speedup, but it drops slightly when using 3 or more nodes. Specifically, for
three nodes (48 cores) the parallel efficiency for the various workloads ranges
between 0.8 and 0.87. We found that this trend is caused by the issue de-1035

scribed in Sec. 6.4.1; as the number of cores increase, some of them remain
idle for a short period of time at the end of the execution due to the shortage
of subnodes to process. Fig. 11b illustrates this fact by means of a sample
execution trace of the algorithm with 64 cores. We observed that in increas-
ing the problem size, the speedup gets closer to its linear counterpart. A1040

potential approach to obtain higher scalability in maintaining the problem
size constant is to start using finer-grained subnodes as the algorithm be-
gins to reach the end of the execution. That would entail (1) maintaining
a counter in the master process that keeps track of the number of feasible
solutions remaining to explore – by leveraging Eq. 9 – and (2) devising a1045

policy to adjust the value of the max children parameter dynamically as we
get closer to the end of the execution. We plan to implement that promising
optimization as part of a future release of our open-source simulator [14].

7. Conclusions and Future Work

In this article we have presented PBBCache, an open-source [14] parallel1050

simulator written in Python enabling rapid prototyping and evaluation of
cache partitioning and clustering policies. PBBCache allows researchers to
quickly compare novel approaches with the optimal solution or with existing
cache-partitioning schemes, making it possible to determine if a new approach

38

is promising even before starting its implementation in the system software1055

and evaluation on real hardware, which can be a time-consuming task [8].
A key aspect of our simulator is the mechanism it employs to determine

the relative performance degradation (i.e. slowdown) that an application suf-
fers when running simultaneously with others on a multicore system. This
mechanism factors in the slowdown that comes from contention on the two1060

main critical shared resources: the last-level cache and memory bandwidth.
To account for memory bandwidth contention we extended the model pro-
posed in [11] with awareness on how sensitive application performance is
to a reduction of the available bandwidth. Evaluating this model entails
solving a set of non-linear equations, which is computationally expensive,1065

and makes determining the optimal cache partitioning that maximizes sys-
tem throughput or fairness a mixed-integer non-linear problem. To efficiently
solve these optimization problems by exploiting parallelism, PBBCache lever-
ages a distributed-memory branch-and-bound (B&B) strategy specifically
tailored for optimal cache partitioning. The mechanism used by this B&B1070

approach to break down the work to be done in parallel into tasks with
a similar computational complexity, coupled with the effectiveness of the
bounding functions specifically designed for the optimization problems con-
sidered, gives rise to a scalable strategy that effectively utilizes multiple cores
on one or several computing nodes, as we demonstrate in this work.1075

For the validation of PBBCache’s simulation model we conducted exper-
iments on real platforms that support Intel CAT and Memory Bandwidth
Monitoring. Our analysis reveals that the simulator succeeds in identifying
what partitioning approach is the most effective for particular workloads.
Notably, in a recent work [8] we demonstrated that PBBCache makes an1080

effective tool to aid in the design of novel cache partitioning policies; the
effectiveness of the LFOC fairness-oriented approach – proposed in [8] and
evaluated in our validation experiments – constitutes a clear example of the
potential of the simulator. An interesting avenue of future work is augment-
ing PBBCache with support to approximate the energy efficiency delivered1085

by a certain partitioning scheme, as that would make it possible to aid in the
design of energy-aware approaches. Similarly, we plan on devising a model
to factor in the effect of applying per-application memory-bandwidth con-
sumption caps via hardware mechanisms such as the recent Intel Memory
Bandwidth Allocation (MBA) technology, so as to enable rapid evaluation1090

of policies that simultaneously exploit the Intel CAT and MBA features. We
will also explore alternative ways to determine the optimal solution more

39

efficiently via B&B by employing hybrid depth-first and best-first schemes.

Acknowledgements

We thank the anonymous reviewers for their invaluable feedback. This1095

work has been supported by the EU (FEDER), the Spanish MINECO and
CM, under grants TIN 2015-65277-R, RTI2018-093684-B-I00 and S2018/TCS-
4423. Adrian Garcia-Garcia is supported by a UCM fellowship grant.

Appendix A. Formalization of Opt-STP and Opt-Unf as MINLPs

Here we provide a detailed formalization of the Opt-STP and Opt-Unf1100

problems for a workloadA consisting ofN single-threaded applications {a1, a2, · · · , aN}
that run on a system featuring a W -way last-level cache with W ≥ N .

We first present the parameters and decision variables which are common
to both optimization problems. The parameters represent performance
metrics of each application in the workload. These values are gathered offline1105

as an application runs alone on the system under different way assignments:

IPCa∈A,k∈K IPC alone (A.1)

Ba∈A,k∈K Bandwidth alone (A.2)

TSa∈A,k∈K Total stalls (A.3)

MSa∈A,k∈K Memory stalls (A.4)

Other parameters are calculated internally based on the others:

pIPCa = IPCa,W , ∀a ∈ A IPC with all available ways (A.5)

pSc
a,k = pIPCa

IPCa,k
, ∀a ∈ A, ∀k ∈ K Relative performance degradation (A.6)

The decision variables are the following:1110

wa∈A,k∈K ∈ {0, 1} Way assignment (A.7)

vBa∈A ∈ R Effective Bandwidth alone (A.8)

vB’a∈A ∈ R Bandwidth shared (A.9)

vT ∈ R Total bandwidth shared (A.10)

vSCa∈A ∈ R Effective slowdown due to cache-sharing (A.11)

vSBa∈A ∈ R Bandwidth Slowdown (A.12)

vTSa∈A ∈ R Effective total stalls (A.13)

vMSa∈A ∈ R Effective memory stalls (A.14)

40

vSa∈A ∈ R Effective Slowdown (A.15)

The Opt-STP problem can be formulated as follows:

Maximize :
∑

a∈A
1

vSa
(A.16)

subject to these linear constraints:

vT =
∑

a∈A vB’a (A.17)
∑

k∈K wa,k = 1, ∀a ∈ A (A.18)
∑

a∈A

∑

k∈K k · wa,k = W (A.19)

1 ≤
∑

k∈K k · wa,k ≤ W −N + 1, ∀a ∈ A (A.20)

vBa =
∑

k∈K Ba,k · wa,k, ∀a ∈ A (A.21)

vSCa =
∑

k∈K pSc
a,k · wa,k, ∀a ∈ A (A.22)

vTSa =
∑

k∈K TSa,k · wa,k, ∀a ∈ A (A.23)

vMSa =
∑

k∈K MSa,k · wa,k, ∀a ∈ A (A.24)

And also subject to the following set of non-linear constraints for the1115

evaluation of the bandwidth model. Specifically, ∀a ∈ A, we have that:

(vB’a)
2 ·

(

1−
1

vBa

)

+ vB’a ·

(

1−
1

vT

)

·

(

1−
1

vBa

)

+ 1−
1

vT
= 0 (A.25)

vSBa =
vTSa + vMSa ·

(

vBa

vB’a
− 1

)

vTSa
(A.26)

vSa = vSCa · vSBa (A.27)

The Opt-Unf problem can be formulated as a MINLP, as follows:

Minimize : Smax

Smin

, Smax ≥ vSa,∀a ∈ A,Smin ≤ vSa,∀a ∈ A (A.28)

subject to the constraints specified by Equations A.17 to A.27.

References

[1] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, M. Prieto-Matias,1120

Survey of scheduling techniques for addressing shared resources in mul-
ticore processors, ACM Comput. Surv. 45 (1) (2012) 4:1–4:28.

[2] E. Ebrahimi, C. J. Lee, O. Mutlu, Y. Patt, Fairness via source throttling:

41

a configurable and high-performance fairness substrate for multi-core
memory systems, in: Proc. of ASPLOS’10, 2010, pp. 335–346.1125

[3] A. Garcia-Garcia, J. C. Saez, M. Prieto-Matias, Contention-aware fair
scheduling for asymmetric single-ISA multicore systems, IEEE Transac-
tions on Computers 67 (12) (2018) 1703–1719.

[4] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, M. E. Gómez, Application
clustering policies to address system fairness with Intels Cache Alloca-1130

tion Technology, in: Proc. of PACT’17, 2017, pp. 194–205.

[5] M. K. Qureshi, Y. N. Patt, Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches, in: Proc. of MICRO’06, 2006, pp. 423–432.

[6] S. Mittal, A survey of techniques for cache partitioning in multicore1135

processors, ACM Comput. Surv. 50 (2) (2017) 27:1–27:39.

[7] K. Nguyen, Introduction to Cache Allocation Tech-
nology in the Intel Xeon Processor E5 v4 Family,
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-tech
(2016).1140

[8] A. Garcia-Garcia, J. C. Saez, F. Castro, M. Prieto-Matias, LFOC: A
lightweight fairness-oriented cache clustering policy for commodity mul-
ticores, in: Proc. of ICPP’19, 2019.

[9] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, D. Sanchez,
KPart: A hybrid cache partitioning-sharing technique for commodity1145

multicores, in: Proc. of HPCA’18, 2018.

[10] C. Yu, P. Petrov, Off-chip memory bandwidth minimization through
cache partitioning for multi-core platforms, in: Proc. of DAC’10, 2010.

[11] T. Y. Morad, N. Shalev, I. Keidar, A. Kolodny, U. C. Weiser, EFS:
Energy-Friendly Scheduler for memory bandwidth constrained systems,1150

Journal of Parallel and Distributed Computing 95 (2016) 3 – 14.

[12] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, O. Mutlu, The ap-
plication slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory, in:
Proc. of MICRO’15, 2015, pp. 62–75.1155

[13] R. Love, Linux Kernel Development, 3rd Ed., Addison-Wesley, 2010.

42

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology

[14] A. Garcia-Garcia, J. C. Saez, J. Casas, Source code repository.
PBBCache: A parallel branch-and-bound based cache-partitioning sim-
ulator, https://github.com/pbbcache/cachesim (2019).

[15] S. Cass, Interactive: The Top Programming Languages 2019,1160

https://spectrum.ieee.org/computing/software/the-top-programming-languages-201
(2019).

[16] SCIP: solving constraint integer programs, https://scip.zib.de/, ac-
cessed: 2019-07-18.

[17] BONMIN: Basic open-source nonlinear mixed integer programming,1165

https://www.coin-or.org/Bonmin/, accessed: 2019-07-17.

[18] BARON: A general purpose global optimization software package,
http://archimedes.cheme.cmu.edu/?q=baron, accessed: 2019-07-15.

[19] The NEOS server, https://neos-server.org/neos/, accessed: 2019-
07-18.1170

[20] D. Xu, C. Wu, P.-C. Yew, J. Li, Z. Wang, Providing fairness on shared-
memory multiprocessors via process scheduling, in: Proc. of SIGMET-
RICS’12, 2012, pp. 295–306.

[21] S. Eyerman, L. Eeckhout, System-level performance metrics for multi-
program workloads, IEEE Micro 28 (3) (2008) 42–53.1175

[22] A. Mukkara, N. Beckmann, D. Sanchez, Whirlpool: Improving dynamic
cache management with static data classification, in: Proc. of ASP-
LOS’16, 2016, pp. 113–127.

[23] B. Gendron, T. G. Crainic, Parallel branch-and-branch algorithms: Sur-
vey and synthesis, Operations research 42 (6) (1994) 1042–1066.1180

[24] T. G. Crainic, B. Le Cun, C. Roucairol, Parallel branch-and-bound al-
gorithms, Parallel combinatorial optimization 1 (2006) 1–28.

[25] S. Edelkamp, S. Schroedl, Heuristic Search: Theory and Applications,
Morgan Kaufmann, 2012.

[26] J. Gmys, M. Mezmaz, N. Melab, D. Tuyttens, A GPU-based branch-1185

and-bound algorithm using Integer-Vector-Matrix data structure, Par.
Comp. 59 (2016) 119 – 139.

43

https://github.com/pbbcache/cachesim
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://scip.zib.de/
https://www.coin-or.org/Bonmin/
http://archimedes.cheme.cmu.edu/?q=baron
https://neos-server.org/neos/

[27] T. Pessoa, J. Gmys, F. de Carvalho-Junior, N. Melab, D. Tuyttens,
GPU-accelerated backtracking using cuda dynamic parallelism, Concur-
rency and Computation: Practice and Experience 30 (9) (2018) e4374.1190

[28] J. F. R. Herrera, J. M. G. Salmerón, E. M. T. Hendrix, R. Asenjo, L. G.
Casado, On parallel branch and bound frameworks for global optimiza-
tion, Journal of Global Optimization 69 (3) (2017) 547–560.

[29] L. Li, H. Liu, H. Wang, T. Liu, W. Li, A parallel algorithm for game
tree search using gpgpu, IEEE Transactions on Parallel and Distributed1195

Systems 26 (8) (2015) 2114–2127.

[30] T. Menouer, Solving combinatorial problems using a parallel framework,
Journal of Parallel and Distributed Computing 112 (2018) 140 – 153.

[31] F. Galea, B. Le Cun, Bob++: a framework for exact combinatorial
optimization methods on parallel machines, in: International Conference1200

High Performance Computing & Simulation, 2007, pp. 779–785.

[32] H. Yun, R. Mancuso, Z. Wu, R. Pellizzoni, PALLOC: DRAM bank-
aware memory allocator for performance isolation on multicore plat-
forms, in: Proc. of RTAS’14, 2014, pp. 155–166.

[33] N. Beckmann, D. Sanchez, Modeling cache performance beyond LRU,1205

in: Proc. of HPCA’16, 2016, pp. 225–236.

[34] IPyparallel. using IPython for parallel computing,
https://ipyparallel.readthedocs.io/, accessed: 2019-03-19
(2018).

[35] Zeromq: An open-source universal messaging library,1210

https://zeromq.org/, accessed: 2019-9-4.

[36] D. Beazley, Understanding the python GIL, in: In PyCON’10 Python
Conference, 2010.

[37] JyNI jython native interface:compatibility/wish list,
https://jyni.org/#compatibility-wish-list, accessed: 2019-1215

11-21.

[38] BSC, Paraver: a flexible performance analysis tool,
https://tools.bsc.es/paraver, accessed: 2019-03-19 (2018).

[39] J. C. Saez, A. Pousa, R. Rodŕıguez-Rodŕıguez, F. Castro, M. Prieto-
Matias, PMCTrack: Delivering performance monitoring counter support1220

to the OS scheduler, The Computer Journal 60 (1) (2017) 60–85.

44

https://ipyparallel.readthedocs.io/
https://zeromq.org/
https://jyni.org/#compatibility-wish-list
https://tools.bsc.es/paraver

	Introduction
	Background
	Metrics
	Optimal cache-partitioning problem
	Optimal cache-clustering problem

	Related Work
	Cache-partitioning and cache-clustering policies
	Parallel Branch-and-Bound

	Design of the PBBCache simulator
	Input data and command-line options
	Determining the slowdown under cache-partitioning
	Modeling Memory Bandwidth Contention

	Determining the slowdown for cache-clustering policies
	Partitioning policies
	Notes on the simulator implementation

	Determining the optimal solution
	Initial solution for B&B
	Bounding functions
	Parallel distributed-memory B&B algorithms
	Determining the optimal cache-clustering solution

	Experiments
	Experimental Setup
	Validation of the simulator
	Effectiveness of the bounding functions Opt-STP and Opt-Unf
	Scalability of the distributed-memory parallel B&B strategy
	Single-node results
	Multi-node results

	Conclusions and Future Work
	Formalization of Opt-STP and Opt-Unf as MINLPs

