
Exploiting Elasticity via OS-runtime Cooperation to Improve CPU Utilization in

Multicore Systems

Javier Rubio, Carlos Bilbao, Juan Carlos Saez, and Manuel Prieto-Matias
Facultad de Informática

Complutense University of Madrid

Madrid, Spain

Email: {jrubio05,cbilbao,jcsaezal,mpmatias}@ucm.es

Abstract—The chip multicore processor (CMP) architecture

has become the predominant design choice for contemporary

general-purpose systems across multiple sectors of commercial

technology. Thanks to technological progress, CMP systems

can now feature hundreds of cores. While multithreaded

applications may potentially benefit from the increasing core

counts, leveraging all available cores is not always feasible

due to limited Thread-Level Parallelism (TLP), load imbalance

among threads, and other scalability bottlenecks.

Colocating multiple applications on the same node is be-

coming a popular practice to maximize processor utilization.

In HPC, malleability –the ability to dynamically alter the

number of active threads within the same application–, is

also being exploited at the runtime-system level to better deal

with scenarios exhibiting time-varying scalability. In the cloud,

application colocation is leveraged along with different forms

of coarse-grained elasticity to cater to the varying resource

demands. This work introduces an operating system (OS) level

elastic mechanism designed to efficiently leverage idle CPU

periods in workloads consisting of unmodified applications,

many of which do not rely on a runtime system to function.

This mechanism constitutes a form of fine-grained vertical

elasticity that leverages cooperation between the runtime sys-

tem and the OS to maximize CPU utilization. To this end,

it opportunistically increases the active thread count of mal-

leable applications during idle periods. We implemented our

proposed OS extensions in the Linux kernel, and augmented

the GNU’s OpenMP runtime to show a proof of concept of

the required OS-runtime interaction. By using diverse multi-

threaded programs, we demonstrate the ability of the proposed

OS support to substantially improve the system throughput.

Index Terms—Multicore processors, operating system, elastic-

ity, Linux kernel, runtime system, OpenMP, malleability.

1. Introduction

The chip multicore processor (CMP) architecture stands
today as the de facto design choice for modern general-
purpose systems. CMPs find a place in embedded devices,
personal computers, high-performance servers, and virtually
all sectors of commercial technology. Thanks to the striking

advances in technology and processor design, CMP systems
already reach hundreds of cores in server platforms. Like-
wise, a substantial increase in the core count is also taking
place in the desktop market [1]. Take for instance the 14th
generation of Intel Core i9 processors, with up to 24 cores.

Multithreaded applications constitute a straightforward
way to benefit from increasing core counts. However, not
every multithreaded program can effectively leverage all
the system’s cores, due to program phases with a limited
degree of Thread-Level Parallelism (TLP) –e.g., explicit
sequential sections– [2], the presence of load imbalance
between worker threads [1], or other scalability bottlenecks
associated with contention on shared memory-related re-
sources between cores [3], [4].

In HPC environments, colocating multiple applications
on the same node is becoming a popular practice towards
improving processor utilization [4], [5]. Several colocation
approaches have been explored in this context. One option
is to statically partition the system’s CPU resources, so that
each co-running applications is assigned an exclusive set of
cores throughout the execution [4]. However, the dynamic
degree of parallelism that many HPC application exhibit
over time makes this approach not only challenging but
suboptimal [5]. Another alternative is to dynamically adjust
the number of active threads of the co-running applications,
so that they use an appropriate number of cores that caters to
the needs of its current execution phase [6]. To this end, the
application must support dynamic malleability, this is, the
ability to utilize a varying number of threads/cores at run-
time. In HPC, delivering malleability support to applications
is simpler than in other scenarios, as HPC applications often
make use of runtime systems; implementing malleability
support at the runtime system level often requires little or
no changes in the application code. In turn, cooperation
between the multiple runtime systems of applications colo-
cated in the same node makes it easier to implement policies
that optimize resource utilization [6], [7].

In the cloud, maximizing resource utilization is
paramount to increase revenue and reduce utility costs [8].
Increasing resource usage is effected via oversubscrip-
tion [9] and elasticity [10]. Specifically, elasticity can be
exploited horizontally (i.e., by increasing the number of
instances of the application using multiple containers/VMs),

1



or vertically (i.e. by dynamically increasing the associated
CPU and memory resources). Cloud elasticity mechanisms
are based on the continuous monitoring of resource usage
and/or the external requests that an application receives.
Previous research has highlighted that, while this is suitable
for client-server applications, it does not meet the needs
of workloads that do not depend on external requests, as
scientific applications [10]. Another limitation of current
cloud dynamic elasticity mechanisms is that they are ap-
plied at coarse granularities; this often makes it difficult to
effectively utilize cores that go idle just for a few seconds.

In this work, we propose an operating-system (OS)
level elastic mechanism to efficiently harness CPU resources
during idle periods on a multicore system. Specifically, we
showcase the potential of automatically maximizing CPU
utilization and improving system throughput when running
a mix of unmodified applications, some of which feature
malleability support in the runtime system. To do so, our
proposal leverages explicit interaction between the OS and
the runtime system, and reacts to OS-visible thread activa-
tions and deactivations (i.e., a thread blocks when waiting).
Our proposal is meant to be used as a complementary
method for vertical elasticity in the cloud, providing a means
to increase CPU utilization and throughput that operates at
a much shorter timescales than existing methods of vertical
elasticity [8]. Moreover, it can be also used in general-
purpose OSs to opportunistically improve CPU utilization
in desktop environments.

To the best of our knowledge, this proposal is the first
to leverage elastic OS-runtime scheduling for workloads
spanning both unmodified malleable and non-malleable ap-
plication types, all without the need for instrumentation
or alterations to the applications’ code. While previously-
proposed techniques to improve CPU utilization also rely
on application colocation and/or perform elastic scheduling
decisions [4], [6], [7], they require that every application in
the workload use a customized runtime system. Unlike our
approach, these techniques do not leverage OS-runtime in-
teraction, and are incompatible with legacy software, which
may not rely on a runtime system to function.

Our work makes the following contributions:

1) We designed an OS-level mechanism that leverages idle
cores left by non-malleable applications to opportunis-
tically increase the active thread count of malleable
applications. The proposed OS extension also reclaims
the extra cores populated by malleable programs au-
tomatically, when non-malleable ones increase their
amount of TLP.

2) We implemented the proposed OS-level support as a
loadable kernel module, which can be loaded in un-
modified Linux kernels (no kernel patches required).

3) As a proof of concept of malleability delivered by the
runtime system, we extended the GNU’s OpenMP run-
time with malleability support for loop-based parallel
programs. To benefit from this support, no changes in
the application source code are required.

4) To assess the effectiveness of our proposal, we em-
ploy program mixes that include malleable and non-

���������

������		
��	
�
���	�������

������		
��	
�
���	�������

��		
��	
�
���	�������

��		
��	
�
���	�������

�����
�
����
�

�����
�
����
�

��
����������
���
��
	

�	������������
�

���
�� ���
�� ���
�����
��

Figure 1: System overview

malleable applications. Our experimental evaluation
shows that our approach brings substantial throughput
gains (24.5% average improvement w.r.t. the default
Linux scheduler). This is accomplished by accelerating
malleable applications without causing a significant
decline in the performance of non-malleable programs.

The remainder of this paper is organized as follows.
Sec. 2 describes the design and implementation of our
proposal. Sec. 3 covers the experimental evaluation. Sec. 4
discusses related work. Finally, Sec. 5 concludes the paper.

2. Design and implementation

Our proposal leverages cooperation between the runtime
system and the OS kernel to maximize CPU utilization and
improve system throughput via dynamic malleability.

Fig. 1 depicts the interaction between the various compo-
nents of our framework and its intended use. The workload
combines a mix of applications; each application may run
directly on top of the operating system or inside a separate
container. Some applications run unmodified programs, po-
tentially legacy software, where threads not doing useful
work block. These applications can be single- or multi-
threaded, and they may or may not use a runtime system.
In case a runtime is used, it does not interact with the OS
or exploits malleability. For simplicity, we refer to these
programs as non-malleable applications. Other programs
leverage malleability via a cooperative runtime system that
runs at user-space and interacts with our proposed OS-
level elasticity manager. As a proof of concept to show the
potential of this OS-runtime interaction, we augmented the
GNU OpenMP runtime system with malleability support in
parallel for constructs. This brings malleability to a wide
range of well-known OpenMP benchmarks that allow us to
quantify the benefits when using unmodified applications.

At a high level, our proposed system works as follows.
The OS-level elasticity manager continuously monitors the
CPU utilization of non-malleable applications. When at least
one non-malleable application consistently leaves idle cores,
the kernel reassigns them to malleable programs. To do so,
it communicates the target active thread count to the runtime
system through a shared memory region, where changes
are notified by OS via a signal delivered to the associated
process. The runtime system is ultimately responsible for
enforcing the desired active thread count. In addition, the

2



elasticity manager exploits thread packing to confine mal-
leable and non-malleable programs in different core groups,
so as to minimize interference between applications.

We implemented our elasticity manager as an OS sched-
uler extension in the Linux kernel v5.16.20. Specifically,
this extension is bundled as a plugin of the PMCSched
framework [1], which can be dynamically loaded in un-
modified kernels (no patch required) via a customizable
kernel module. The malleability extensions for OpenMP
were incorporated into the GNU OpenMP runtime system
that comes with GCC 11.2, also referred to as libgomp.

In the remainder of this section, we first describe the
way in which the kernel-level elasticity manager interacts
with the user-level runtime system. We then present the
inner workings of the elasticity manager. Lastly, we explain
how the runtime system enforces the necessary active thread
count in parallel for OpenMP constructs.

2.1. OS-Runtime interface

Communication between the malleability-enabled run-
time system and the OS kernel takes place through a per-
application shared memory region. In our implementation,
this region holds a simple two-field data structure. The first
field, called is_malleable, is a flag that the runtime
system sets to 1 to inform the OS that the application sup-
ports malleability. In our OpenMP runtime implementation,
this flag is set to 1 when the program enters the first parallel
section, although the runtime has the potential to selectively
disable it when the application enters phases that are not
amenable to malleability, such as explicit sequential regions.
The second field (target_threads) is exclusively mod-
ified by the elasticity manager and is used to inform the
runtime system of the maximum allowed number of active
threads for the application. Every time this integer field is
altered, the elasticity manager sends the SIGUSR1 signal to
the application process. We opted to deliver that signal as
it is one reserved for user-defined purposes in the POSIX
standard. The runtime system must install the associated
signal handler and carry out the necessary implementation-
specific actions upon signal reception to enforce that maxi-
mum target thread count.

We should highlight that allowing an application to
communicate with the OS kernel via shared memory to
exchange scheduling-relevant information is inspired by the
schedctl() system call present in the Solaris operating
system [11]. This call returns a pointer to a scheduling-
related data structure, allowing efficient bidirectional com-
munication between user and kernel spaces without the need
for additional system calls. To create the per-application
memory region shared with the Linux kernel, we leverage
the built-in support provided by PMCSched [1]. This allows
us to seamlessly create the region by relying on the existing
set of Linux system calls. To this end, the main thread
must open the /proc/pmc/schedctl special file –exported by
PMCSched– and then pass the returned file descriptor to
the mmap() system call. Internally, PMCSched associates
the custom data structure with the corresponding process

descriptor (Linux task struct), thus making it available
to any PMCSched plugin, including our elasticity manager,
described in the next section.

2.2. Elasticity manager

The elasticity manager (EM) is an OS scheduler exten-
sion that distributes the system’s cores among malleable and
non-malleable applications in the workload. It works coop-
eratively with the Linux process scheduler by dynamically
adjusting CPU affinities and by communicating with the
runtime system of each malleable application. EM reacts to
key scheduling events, such as when a new process/thread is
created, when a thread terminates or blocks, and when it be-
comes runnable again. Additionally, EM’s code is activated
periodically in a system-wide fashion to assign cores to the
various applications on the system. EM was implemented
as a plugin of the PMCSched tool [1]; the interface of a
PMCSched plugin consists of a set of callbacks allowing
to capture the aforementioned scheduling events [12]. The
periodic activation of EM is also triggered by PMCSched.

EM maintains three global linked lists: active applica-
tions (processes with at least one runnable thread), idle ap-
plications (non-malleable programs with no runnable threads
at this point), and malleable applications whose target thread
count and affinity masks needs to be updated. The first two
lists may require updating when a thread enters the system,
becomes runnable, blocks, or exits. The third list is popu-
lated by the periodic system-wide core allocation algorithm
described next, which is activated every em_period ms.
Notably, em_period is a configurable parameter of EM.

Between executions of the core allocation algorithm,
EM continuously monitors changes in threads’ states (i.e.,
blocked and runnable) to keep track of the amount of time
that each application spends with different runnable thread
counts. For this purpose, it maintains a per-application ac-

tivity vector – an array whose i-th entry stores the amount of
time (in nanoseconds) the application spends with i runnable
threads. Activity vectors of non-malleable applications are
taken into consideration by EM to decide how to distribute
cores among processes; these vectors are reset by the core
allocation algorithm so as to start a new monitoring interval,
which lasts a full em_period. For efficiency reasons, the
activity vector is accompanied by a bitmask, where each
bit indicates the validity of a particular entry. Maintaining
this bitmask allows us to efficiently determine the applica-
tion’s usual thread count, and makes it possible to reset the
activity vector without zero-filling all its entries (the entire
bitmask is cleared instead). We should also highlight that
EM makes changes in a process’s activity vector only when
one of its threads becomes inactive (blocks or terminates)
or runnable again; these events are captured by leveraging
specific callbacks provided by PMCsched. When the system
is idle, these callbacks are not called, and the periodic core
allocation algorithm is not engaged; therefore, EM’s code is
not invoked during idle system periods.

Alg. 1 depicts the pseudo-code of EM’s periodic core
allocation algorithm, which comprises two steps. In Step 1,

3



Algorithm 1 Core allocation algorithm
1: function periodic core allocation(void)
2: nr remaining cores = num online cpus()

⊲ lists for malleable and non-malleable applications
3: m list=[] ; n list=[]

⊲ STEP 1: Determine application types and number of cores used by
non-malleable applications

4: for each app in active list do
5: if app.shared region and app.shared region.is malleable then
6: m list.append(app)
7: else
8: nr remaining cores -= get typical thread count(app)
9: n list.append(app)

10: reset activity vector(app)

⊲ STEP 2: Assign remaining cores to malleable applications
11: nr remaining apps = len(m list)
12: if len(idle apps) > 0 then
13: nr remaining cores--

⊲ Ensure there is at least one core for each malleable application
14: if nr remaining cores < len(m list) then
15: nr remaining cores = len(m list)
16: non mall cores = num online cpus() - nr remaining cores
17: for each app in m list do

18: nr fair cores = max(1,
⌊

nr remaining cores

nr remaining apps

⌋

)

19: nr remaining apps--
20: nr remaining cores -= nr fair cores
21: if app.shared region.target threads != nr fair cores then
22: app.shared region.target threads = nr fair cores
23: update affinity mask(app, nr fair cores, non mall cores)
24: apps to update.append(app)

25: if len(apps to update) > 0 then
26: wake up kernel thread()

EM traverses the list of active applications and divides them
into two classes: malleable and non-malleable. To determine
the application’s class, EM attempts to obtain a reference to
the structure stored in the memory region shared with the
runtime system. If present, this structure is retrieved from
the task descriptor of the process’s group leader (the task
structure from the main thread). The application is classified
as malleable only if the shared memory region exists, and
the current value of the is_malleable attribute is one
(recall that the runtime system may dynamically alter this
flag). Otherwise, the application is considered to be non-
malleable. The loop in Step 1 also calculates the number
of cores utilized by each non-malleable application, by in-
voking the typical_thread_count() auxiliary func-
tion. This function traverses the application’s activity vector
from higher to smaller thread counts, disregarding invalid
entries, and returns the highest thread count whose entry
stores a number no smaller than the min_threshold

parameter. This configurable parameter establishes the min-
imum amount of CPU time a process must run within the
em_period to be considered sufficiently CPU intensive.
Note also that EM reserves one core for all idle applications.
This substantially reduces the number of context switches in
the event a thread from these applications suddenly becomes
runnable. This is a common scenario in compute-intensive
programs like those we used for evaluation (see Sec. 3).

Step 2 of the algorithm takes care of evenly distributing
the remaining cores1 (variable nr_remaining_cores)
among malleable applications. To do so, it traverses the

1. Exploring uneven core distribution among applications is out of the
scope of this work. However, previous research [6] suggests that this would
bring further throughput improvements.

local list of malleable applications, and for each one it
assigns a target thread count that matches its fair share
of nr_remaining_cores. If the desired target thread
count is different from the current one (i.e., the value
stored in the shared memory region), EM updates the
target_threads attribute in the shared structure. This
step of the algorithm also takes care of determining the
new CPU affinity mask of each malleable application, so
that their threads are confined in specific sets of cores,
different from those used by non-malleable applications.
Note that in doing so, EM leverages thread-packing [13],
as the total number of threads of malleable applications is
typically greater than the number of cores assigned to it
(see Sec. 2.3). Affinity masks are assigned in such a way
that the nr_remaining_cores CPUs (cores) with the
highest IDs are assigned to malleable programs. Therefore,
all CPUs with IDs smaller than nr_remaining_cores

are devoted to running non-malleable programs. Clearly, this
implementation does not consider scenarios where the user
explicitly reserves specific cores to run critical threads (e.g. a
resource manager), or the fact that threads of non-malleable
applications may be pinned to specific cores. As future work
we plan to augment EM with a more sophisticated thread-
to-core assignment policy that factors in these constraints.

Lastly, the algorithm activates a kernel thread to signal
processes whose maximum thread count need adjusting, and
to impose the designated per-application affinity masks to all
of their threads. We should highlight that a kernel thread is
required in this scenario, because the functions of the Linux
kernel API that deliver signals and enforce affinity masks
–which may trigger thread migrations– are blocking calls.
Therefore, they must be invoked from process context, which
is not the context type where the periodic core allocation
algorithm runs (interrupt context).

2.3. Malleability in the OpenMP runtime system

The OpenMP runtime system already allows to request
the utilization of different number of worker threads in the
various parallel regions of a program. While this consti-
tutes a form of malleability, its coarse granularity makes it
impossible to react in our target time frame (a matter of
milliseconds) in the vast majority of loop-based OpenMP
programs. To achieve a finer-granularity and react as soon as
possible when a thread change is requested from the kernel,
we chose to implement the malleability control within loop-
scheduling methods. As as proof of concept, we modified
the dynamic and guided loop-scheduling methods. Note
that the static loop-scheduling technique is not amenable
to malleability. Indeed, in the libgomp implementation each
worker thread invokes a single runtime call at the beginning
of the loop, to get its full share of it.

To adopt malleability within the GNU OpenMP runtime
system, we made a number of modifications, some of which
affect environment variables. Specifically, we introduced
two new environment variables: GOMP_MALLEABLE and
GOMP_MAX_THREADS. These variables allow the user to
enable or disable malleability and to indicate the max-

4



imum number of threads the application can run with,
respectively. In our experiments, we systematically set
GOMP_MAX_THREADS to the total number of cores in the
system, which is standard practice when exploiting mal-
leability [6]. Note also that when malleability is enabled,
the purpose of the standard OMP_NUM_THREADS environ-
ment variable was altered to allow specifying the initial
number of active threads the application uses. Likewise,
the omp_set_num_threads() OpenMP API function
was also modified to allow establishing the same property.
Regarding global settings, our modified runtime system
automatically sets the default wait policy in synchronization
primitives to the passive mode, just like in previous
work [6]. By allowing worker threads to sleep instead of
busy-wait on synchronization primitives (e.g., barriers), we
effectively avoid wasting CPU cycles. This is paramount in
oversubscription scenarios, which become apparent in multi-
program settings, where EM grants a number of cores to the
application that is often smaller that its total thread count.

To engage malleability within parallel loops, we employ
a global a bit array, including an entry for each thread,
to indicate whether it is active or inactive. Within a loop,
active threads act as normal OpenMP worker threads, while
inactive ones remain blocked inside the runtime calls asso-
ciated with removing loop-iterations from the pool in the
dynamic or guided methods. To determine the current
chunk when a thread removes iterations from the pool
in the guided method, we use the current number of
active threads in the calculation rather than the total thread
count. Note also that to enforce synchronization, we employ
standard POSIX mutexes and condition variables. Within
the runtime system implementation, the application’s master
thread takes care of initializing all these global resources.
It also requests the creation of the per-application memory
region shared with the EM (kernel space), and installs the
signal handler for the SIGUSR1 signal, which EM delivers
when a change of the active thread count is in order.

Upon receiving the SIGUSR1 signal, the runtime system
reads the new target thread count value from shared memory,
modifies the bit array of active threads accordingly, and
wakes up the necessary threads (those in the active state).
When a newly active thread wakes up, it proceeds to remove
iterations from the pool and executes them. Should the
number of active threads decrease upon signal reception,
the threads that were recently forced to become inactive
will block upon invocation of any runtime call for removing
loop-iterations from the shared pool. Lastly, we should
highlight that in our implementation all threads (active and
inactive) must synchronize with each other in the implicit
barrier present at the end of most parallel loops. To this
end, when an active thread detects that all iterations for this
parallel loop have been completed, it will awake all blocked
(inactive) threads, ensuring they can arrive at the barrier.

3. Experimental evaluation

In this section, we begin by describing our experimental
setup and introducing the applications and methodology em-

ployed in our experiments (Sec. 3.1). The detailed discussion
of the results can be found in Sec. 3.2.

3.1. Experimental setup and methodology

Our evaluation was performed on a 16-core Intel Xeon
Gold 5218 “Cascade Lake” processor, where cores run at
2.3Ghz. All cores feature two private cache levels (64KB
L1 + 1MB L2) and share a 22MB last-level (L3) cache.

To assess the effectiveness of our proposal, we ex-
perimented with both POSIX threads (aka pthreads) and
OpenMP programs. Specifically, we considered multi-
threaded applications from different benchmark suites, en-
compassing NAS Parallel Benchmarks [14], PARSEC [15]
and Rodinia [16]. In addition, we included RNASeq [17],
an OpenMP-based RNA sequencing application, and two
pthreads-based programs: BLAST, a bioinformatics appli-
cation, and FFTW3D [2], a scientific benchmark performing
the fast Fourier transform. For the NAS and PARSEC bench-
mark suites, we employed the C and native input sets,
respectively. Given the exceedingly short execution time of
Rodinia benchmarks when using their default command-line
settings, we opted to use the alternative input sets employed
by previous research [1], [18]. The exact command-line
parameters we used can be found in prior work [18].

All OpenMP programs (unmodified) were compiled with
a customized GCC 11.2 compiler [1], which contains a
simple patch that just alters the default loop-scheduling
method from static to runtime. This allows the user
to enforce the desired loop-scheduling method and other
parameters (via environment variables) for all parallel loops
not including the schedule clause; this is the case of the
vast majority of the loops in the considered applications.
We should also highlight that application loops where the
programmer explicitly established the dynamic, guided,
or runtime scheduling methods also make use of our
malleabillity extensions, which are globally enabled when
the GOMP_MALLEABLE environment variable is set to 1.

In building the workloads, we first proceeded to iden-
tify parallel applications that exhibit execution phases with
limited thread-level parallelism (TLP). These applications
often leave idle cores, allowing our elasticity manager to
opportunistically increase the thread count of other (mal-
leable) programs within the workload, thus maximizing the
processor’s utilization. To identify applications of this kind,
we built a PMCSched plugin that efficiently monitors the
amount of time an application spends with different number
of runnable (i.e., non-blocked) threads. Fig. 2 shows the
fraction over the total execution time that different programs
spend with various runnable thread counts. In this exper-
iment, we launched the programs with 8 threads, as this
is the thread count used to run non-malleable programs in
our workloads. The results reveal that some programs spend
more than 40% of its execution time running with just a
single runnable thread. This is the case of one OpenMP
application (pathfinder) and three pthreads-based pro-
grams: blackscholes, BLAST and FFTW3D. The limited

5



black
sc

holes

face
sim

flu
idanim

ate

sw
aptio

ns EP CG MG

pathfin
der

parti
cle

filt
er

sra
dv2

BLAST

FFTW
3D

20%

40%

60%

80%

100%
T

im
e

fr
a
c
ti
o
n

s
p
e
n
t

w
it
h

d
if
fe

re
n
t
th

re
a
d

c
o
u
n
ts 0T

1T

2T

3T

4T

5T

6T

7T

8T

Figure 2: Time fraction spent with different runnable thread counts in
various applications.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of threads

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

EP

CG

RNASeq

particlefilter

sradv2

Figure 3: Scalability of several OpenMP programs in our experimental
platform.

TLP in this context stems from the presence of long sequen-
tial phases (predominantly in initialization code), coarse-
grained critical sections, or severe load imbalance among
worker threads. By contrast, other applications, like EP or
particlefilter, consistently run with the maximum
thread count during most of their execution time.

To find OpenMP programs that potentially benefit from
malleability in the presence of idle cores, we ran the various
analyzed applications with different thread counts (from 1 to
16). Fig. 3 shows the speedup of a number of OpenMP pro-
grams that experience diverse performance improvements as
the thread/core count increases.

In constructing the workloads, we selected 12 pro-
grams from the full set of benchmarks considered. Among
these programs, four exhibit limited TLP (blackscholes,
BLAST, FFTW3D and pathfinder), while the rest are
OpenMP programs that experience significant benefit when
increasing their thread counts. Table 1 presents the 24
random program mixes employed in our experiments. Each
workload includes a non-malleable (N) program with limited
TLP, and a malleable (M) OpenMP one. Both programs are
launched with 8 threads each on our 16-core experimental
system. Note also that OpenMP programs run with the best-
performing loop-scheduling method among those supporting
malleability (guided or dynamic).

We ran each workload in three different scenarios. In
the first one, referred to as Stock-Linux, no malleability OS
extensions are loaded, and applications use the unmodified
version of the OpenMP runtime system. Under these circum-
stances both applications use a fixed thread count – 8 threads
each. Moreover, the threads of the N-program are mapped
to CPUs 0-7 via user-enforced affinities, while threads of
the other application run on the remaining cores (CPUs 8-
15). In the second scenario –denoted as Oversubscription–

we run the M-program with 16 threads, whereas the N-
program still uses 8 threads; affinities are only imposed to
threads of the N-program, which are pinned to CPUs 0-7.
This scenario does not leverage malleability, but exploits
the fact that the N-program temporarily leaves idle cores,
which can be used by the additional threads (one thread per
core) used by the M-program. We considered this scenario to
assess (1) how effectively the stock OS scheduler together
with the unmodified runtime system deal with idle cores,
and (2) what is the impact of leveraging oversubscription
in the performance of the non-malleable program. In the
last scenario, we enable our kernel-level elasticity manager
(EM), and activate the malleabillity support in our modified
OpenMP runtime system. No user-enforced CPU affinities
are used in this case, and, as opposed to the remaining sce-
narios, the active thread count of the OpenMP (malleable)
application is dynamically adjusted based on the number of
idle cores left by the other multithreaded program. Notably,
we conducted a sensitivity study (omitted due to space con-
straints) to determine a suitable choice of the em_period
and min_threshold configurable parameters of EM in
our platform. Based on the results, we opted to set these
parameters to 100ms and 2ms, respectively.

For each workload and scenario we measure the applica-
tion performance (completion time) and system throughput
(STP metric [19]). It is worth highlighting that running
each program in the workload just once until completion,
provides misleading performance results, especially when
the N-program is shorter than the M-program. In that case,
the M-program automatically experiences a performance
boost under the elasticity manager, simply because threads
of this program effectively populate all the platform’s cores
whe the N-program terminates. For accurate assessment of
the performance gains provided by the elasticity manager
when both applications run together the whole time, we
employ a similar method than in prior work [20], so as to
keep the system’s load uniform throughout an experiment.
To elaborate, we ensure that all applications in the mix
commence simultaneously. When one of them finishes its
execution, it is consistently restarted until the program with
the longest runtime completes three iterations. Then, we
measure system throughput based on the geometric mean
of the completion times observed for each application.

3.2. Discussion of experimental results

Fig. 4a shows the relative performance that each applica-
tion in the workload obtains under EM and Oversubscription
vs. Stock Linux. Clearly, EM delivers substantial perfor-
mance gains for M-programs (up to 83%, for workload M4).
This is due to the effective utilization of idle cores left by
N-programs, all with limited TLP. In most cases this is ac-
complished without significantly degrading the performance
of the N-program. For the vast majority of the workloads,
the performance of the non-malleable applications remains
within a 1.7% range of that obtained with Stock-Linux. The
substantial acceleration of M-programs across the board also
leads to a considerable increase in the system throughput,

6



TABLE 1: Each table column Mi depicts the composition of the i-th workload used in our experiments. The (N) suffix in the application name (see row
labels) indicate that the application is non-malleable. Conversely, malleable programs are listed with the (M) suffix. When a program is included in a
workload, a black dot is displayed; otherwise, the associated cell is blank.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24
blackscholes(N) • • • • • •

BLAST(N) • • • • • •

FFTW3D(N) • • • • • •

pathfinder(N) • • • • • •

CG(M) • •

EP(M) • • •

heartwall(M) • • •

leukocyte(M) • • •

particlefilter(M) • • • •

RNASeq(M) • • •

sradv2(M) • • •

streamcluster(M) • • •

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
o
rm

a
liz

e
d

S
p
e
e
d
u
p

Non-malleable(Over) Non-malleable(EM) Malleable(Over) Malleable(EM)

(a) Normalized speedup for each application under Oversubscription and EM

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

N
o
rm

a
liz

e
d

T
h
ro

u
g
h
p
u
t

Oversubscription EM

(b) Normalized system throughput

Figure 4: (a)Relative speedup for each application in the workload under Oversubscription and EM vs. Stock-Linux, and (b) normalized throughput for
the various program mixes.

as Fig. 4b reveals. Compared to Stock-Linux, EM improves
throughput by up to 43%, and by 24.5% on average.

Now we turn our attention to the results under Over-
subscription (Over), and compare them with the EM coun-
terparts. Running the malleable OpenMP application with
16 threads throughout the execution (what happens under
Over), makes it possible in many workloads to achieve
higher performance for this program w.r.t. EM. Despite the
issues and overheads stemming from oversubscription [9],
[21], the loop-scheduling methods used in our experiments
(dynamic and guided) are key in improving the performance
of the M-program. In this context, these methods automat-
ically assign more work to threads running on a dedicated
core than to threads time-sharing a core with other threads.
This partially mitigates the imbalance arising from oversub-
scription. Unfortunately, the acceleration of the malleable
OpenMP application under Over usually comes at the ex-
pense of degrading the performance of the N-program. Take
for instance the results of M19 workload in Fig. 4a, where
a substantial performance gain is accomplished for the M-

program in exchange for a 21% performance degradation of
the N-program. This stems from the fact that, under Over,
threads of the N-program often have to time-share a core
with threads from the other application; this causes uneven
progress among threads2, thus deteriorating the N-program’s
performance. All in all, we conclude that leveraging over-
subscription may bring additional throughput improvements
in some cases (e.g. see results for M8, M11, or M19 in
Fig. 4b), but it also negatively (and consistently) impacts
the performance of the non-malleable program. Conversely,
EM guarantees lower overheads of non-malleable programs.
After all, EM strives to avoid oversubscription when exploit-
ing malleability dynamically.

The results provided by EM for the M7 and M23
workloads –both including the FFTW3D (non-malleable)
application– are also of special attention. Specifically, as
shown in Fig. 4a, the acceleration of the malleable partner

2. The N-programs we used do not exploit dynamic load balancing
among threads; instead, threads are assigned a fixed amount of work upon
creation. Hence, oversubscription gives rise to uneven thread progress.

7



M7 (m
axT=16)

M7 (m
axT=15)

M7 (m
axT=14)

M7 (m
axT=13)

M7 (m
axT=12)

M7 (m
axT=11)

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
o
rm

a
liz

e
d

S
p
e
e
d
u
p

FFTW3D sradv2

(a) Normalized speedup
M7

1.00

1.05

1.10

1.15

1.20

N
o
rm

a
liz

e
d

S
T

P

EM(maxT=16)

EM(maxT=15)

EM(maxT=14)

EM(maxT=13)

EM(maxT=12)

EM(maxT=11)

(b) Normalized system throughput

Figure 5: Limiting the active thread count of the malleable application of
workload M7 under EM.

comes at the expense of noticeable performance degradation
of FFTW3D, being particularly noteworthy the 16.6% per-
formance penalty in M7. After a thorough analysis of these
scenarios, we determined that this degradation is caused by
severe bandwidth contention on the platform. Essentially,
FFTW3D is a highly bandwidth-intensive program, and when
it shares the system with another bandwidth-intensive appli-
cation, the system’s bandwidth saturation point is reached.
This situation is further aggravated by the effect of the elas-
ticity manager. Granted, increasing the number of threads
of a bandwidth-intensive program causes its bandwidth con-
sumption to grow [22], thereby exacerbating the bandwidth
contention problem. This especially deteriorates the perfor-
mance of the non-malleable program, which does not enjoy
a dynamic increase in its thread count.

We found that this issue can be addressed by limiting
the number of threads assigned to the malleable application
by our elasticity manager. As an illustrative example, Fig 5
shows the impact on application performance and system
throughput that comes from imposing an upper limit to the
number of threads assigned to the malleable application
in workload M7, ranging from 16 threads (maxT=16) to
11 threads (maxT=11). Clearly, setting a lower limit on
the number of threads utilized by the malleable program
(sradv2) reduces the performance degradation of the non-
malleable one (FFTW3D). However, this also comes at the
expense of a consistent reduction of both sradv2’s per-
formance and the system throughput. Moreover, throughput
gains reach a peak value when no capping is applied (16
threads maximum, matching the total core count). Therefore,
this experiment underscores that in specific cases a trade-off
must be made to reap throughput benefits without deterio-
rating the performance of non-malleable programs. More
importantly, memory bandwidth contention –in addition to
the idle core count– should be taken into consideration
when leveraging dynamic malleability to avoid performance
degradation. Incorporating contention awareness into our
elasticity manager constitutes a promising research avenue.

4. Related work

Elasticity is a key feature in the cloud, as it allows
providers to offer scalable resources on demand while max-
imizing profits [8]. Notably, existing CPU elasticity mecha-
nisms operate at higher time frames and coarser granularity
than our node-level OS-oriented approach. For example,

virtual machines or containers may be migrated to another
node in response to a request to increase CPU resources [8],
[9], which can take several seconds.

Huang et al. [9] propose an OS-level elasticity strategy
that exploits various optimizations in the synchronization
primitives. While this approach is also based on rapid
scheduling of runnable threads during short idle periods, it
focuses on the efficient handling of CPU oversubscription,
rather than on the dynamic adaptation of thread counts in
malleable programs. Moreover, unlike our proposal, Huang’s
work [9] does not propose any kind of OS-runtime cooper-
ation method, or explicitly supports malleable applications.
Other works not leveraging malleability either [1], [21],
[23] acknowledge the importance of the coordination and
information exchange between the OS and the application.
For example, [21], [23] underscore the potential of making
the OS scheduler aware of threads that are busy waiting in
synchronization primitives by issuing notifications from the
application level. Saez et al. [23] exploit this OS-runtime
interaction in an actual OS scheduler implementation. Our
proposal could be augmented so as to leverage information
on busy waiting threads to improve effective CPU usage.

Malleability has been widely exploited in HPC in a
more general form, this is, by performing dynamic re-
source reallocation across nodes, including adjustments in
the number of worker processes/threads, and the necessary
data redistribution [24]. By contrast, we looked at a more
specific type of malleability that leverages active thread
adjustments in a single node and is orchestrated by the
OS. While our proposal focuses on describing the OS-
runtime interaction and uses malleable OpenMP parallel for
work-sharing constructs as a proof of concept, the OpenMP
tasking model also lends itself (even more) to dynamic
thread count adjustments. A wide range of techniques that
leverage malleability, such as free-agent threads [25]–[27],
have been proposed for OpenMP, most of which operate
entirely at the runtime system level or in the cluster/job
scheduler (e.g., Slurm) [5], [28]. These techniques could
also benefit from OS-runtime cooperation and are exciting
avenues for future research.

In elastic OpenMP [29], authors propose a mechanism
to provide elasticity support for OpenMP applications that
make the dynamic provisioning of cloud resources possible.
This proposal supports the dynamic adjustment of resources
(vCPUs) and a set of additional routines to enable the con-
figuration of the elastic execution. Our OpenMP prototype
has also adapted the inner workings of the parallel construct,
but the problems we have addressed are orthogonal.

Other works also applied dynamic thread adjustment un-
der colocation. Cho et al. introduced NuPoCo [6], a runtime-
system level solution that strives to efficiently utilize both
the CPU and memory controller when multiple parallel ap-
plications share the system. Our proposal conversely places
its emphasis on the exploitation of idle cycles left by unmod-
ified applications through elasticity support within the OS.
More importantly, unlike our approach, NuPoCo requires
that every application in the workload use a customized
runtime system, thus being incompatible with legacy single-

8



threaded and multithreaded software.

5. Conclusions and Future Work

In this work, we have proposed an OS-level elasticity
mechanism that strives to maximize CPU utilization and
system throughput, when running workloads consisting of a
mix of non-malleable programs and malleable applications
(i.e., with the ability to vary their thread count). To accom-
plish its goals, our proposal leverages idle cores left by non-
malleable applications (even for short periods of time), and
exploits synergistic cooperation between the OS kernel and
the runtime system for the dynamic adjustment of active
threads in malleable applications.

To demonstrate the effectiveness of the proposed OS
extension, we have implemented it in the Linux kernel. The
associated OS-level support is bundled as a loadable kernel
module that can be loaded in unmodified (unpatched) Linux
kernels. We also augmented the GNU OpenMP runtime sys-
tem to provide a proof-of-concept malleability support at the
runtime system level that exploits the OS-runtime interaction
required by our proposal. This malleability support can be
utilized by a wide range of unmodified loop-based parallel
applications. Our experiments reveal that our proposal de-
livers improved system throughput, while having minimal
impact in the performance of non-malleable programs. This
is accomplished thanks to the opportunistic utilization of
idle cores to accelerate malleable applications.

As for future work, we plan on augmenting our proposal
to explicitly deal with contention on shared resources among
cores (e.g., shared last-level-cache). Providing the necessary
support to deliver benefits to applications beyond compute-
intensive applications and loop-based OpenMP programs is
also an interesting avenue for future work.

Acknowledgments

This work has been supported by the Spanish MCIN
under Grant PID2021-126576NB-I00, funded also by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way
of making Europe”.

References

[1] C. Bilbao, J. C. Saez, and M. Prieto-Matias, “Flexible system software
scheduling for asymmetric multicore systems with PMCSched: A case
for Intel Alder Lake,” Concurrency and Computation: Practice and

Experience, p. e7814, 2023.

[2] M. Annavaram et al., “Mitigating Amdahl’s Law through EPI Throt-
tling,” in Proc. of ISCA ’05, 2005, pp. 298–309.

[3] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven
threading: Power-efficient and high-performance execution of multi-
threaded workloads on cmps,” in Proc. of ASPLOS ’08, 2008, p.
277–286.

[4] F. V. Zacarias et al., “Intelligent colocation of HPC workloads,”
Journal of Parallel and Distributed Computing, vol. 151, pp. 125–
137, 2021.

[5] D. Álvarez, K. Sala, and V. Beltran, “nos-v: Co-executing hpc ap-
plications using system-wide task scheduling,” https://arxiv.org/abs/
2204.10768, 2022.

[6] Y. Cho, C. A. C. Guzman, and B. Egger, “Maximizing system utiliza-
tion via parallelism management for co-located parallel applications,”
in PACT, ser. In Proc. of PACT ’18, 2018.

[7] T. Harris, M. Maas, and V. J. Marathe, “Callisto: Co-scheduling
parallel runtime systems,” in In Proc. of EuroSys ’14, 2014.

[8] Y. Al-Dhuraibi et al., “Elasticity in cloud computing: State of the art
and research challenges,” IEEE Transactions on Services Computing,
vol. 11, no. 2, pp. 430–447, 2018.

[9] H. Huang et al., “Towards exploiting cpu elasticity via efficient thread
oversubscription,” ser. In Proc. of HPDC’21, 2021, p. 215–226.

[10] G. Galante and L. C. Erpen De Bona, “A programming-level approach
for elasticizing parallel scientific applications,” Journal of Systems

and Software, vol. 110, pp. 239–252, 2015.

[11] J. Mauro and R. McDougall, Solaris Internals: Solaris 10 and Open-

Solaris Kernel Architecture, Second Edition. Prentice Hall, 2006.

[12] C. Bilbao and J. C. Saez, “PMCSched website,” https://github.com/
Zildj1an/pmcsched-website, GitHub, 2022, accessed: 2023-10-23.

[13] J. Park et al., “Hypart: A hybrid technique for practical memory
bandwidth partitioning on commodity servers,” in Proc. of PACT ’18,
2018, pp. 5:1–5:14.

[14] D. H. Bailey, E. Barszcz, and J. T. Barton et al., “The NAS parallel
benchmarks—summary and preliminary results,” in Supercomputing

’91, 1991, pp. 158–165.

[15] C. Bienia et al., “The PARSEC Benchmark Suite: Characterization
and Architectural Implications,” in Proc. of PACT’08, 2008.

[16] S. Che et al., “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proc of IISWC ’09, 2009, pp. 44–54.

[17] H. Chitsaz et al., “A partition function algorithm for interacting
nucleic acid strands,” Bioinformatics, vol. 25, no. 12, pp. i365–i373,
2009.

[18] T. Suzuki, A. Nukada, and S. Matsuoka, “Efficient execution of
multiple cuda applications using transparent suspend, resume and
migration,” in Proc. of Euro-Par ’15, 2015.

[19] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, pp. 42–53, 2008.

[20] D. Shelepov et al., “HASS: a Scheduler for Heterogeneous Multicore
Systems,” Oper. Syst. Review, vol. 43, no. 2, pp. 66–75, 2009.

[21] J. H. M. Korndörfer et al., “How do os and application schedulers
interact? an investigation with multithreaded applications,” in Proc.

of Euro-Par ’23, 2023, pp. 214–228.

[22] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-
Driven Threading: Power-Efficient and High-Performance Execution
of Multi-Threaded Workloads on CMPs,” in Proc. of ASPLOS ’08,
2008, p. 277–286.

[23] J. C. Saez et al., “Operating system support for mitigating software
scalability bottlenecks on asymmetric multicore processors,” in Proc.

of CF’ 10, 2010, pp. 31–40.

[24] J. I. Aliaga et al., “A survey on malleability solutions for high-
performance distributed computing,” Applied Sciences, no. 10, 2022.

[25] J. Criado et al., “Exploiting openmp malleability with free agent
threads and dlb,” in ISC High Performance 2022 International Work-

shops, 2022.

[26] ——, “Role-shifting threads: Increasing openmp malleability to ad-
dress load imbalance at mpi and openmp,” The International Journal

of High Performance Computing Applications (In press), 2023.

[27] OpenMP Architecture Review Board, “Openmp technical report 12:
Version 6.0 preview 2,” https://www.openmp.org/wp-content/uploads/
openmp-TR12.pdf, 2023, Accessed: 2023-11-12.

[28] M. D’Amico et al., “Drom: Enabling efficient and effortless mal-
leability for resource managers,” in Proc. of ICPP Workshops ’18,
2018.

[29] G. Galante and R. da Rosa Righi, “Adaptive parallel applications:
From shared memory architectures to fog computing (2002-2022),”
Cluster Computing, vol. 25, no. 6, p. 4439–4461, 2022.

9

https://arxiv.org/abs/2204.10768
https://arxiv.org/abs/2204.10768
https://github.com/Zildj1an/pmcsched-website
https://github.com/Zildj1an/pmcsched-website
https://www.openmp.org/wp-content/uploads/openmp-TR12.pdf
https://www.openmp.org/wp-content/uploads/openmp-TR12.pdf

	Introduction
	Design and implementation
	OS-Runtime interface
	Elasticity manager
	Malleability in the OpenMP runtime system

	Experimental evaluation
	Experimental setup and methodology
	Discussion of experimental results

	Related work
	Conclusions and Future Work
	References

