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ABSTRACT
Single-ISA (instruction set architecture) asymmetric multi-
core processors (AMPs) were shown to deliver higher per-
formance per watt and area than symmetric CMPs (Chip
Multi-Processors) for applications with diverse architectural
requirements. A large body of work has demonstrated that
this potential of AMP systems can be realizable via OS
scheduling. Yet, existing schedulers that seek to deliver
fairness on AMPs do not ensure that equal-priority applica-
tions experience the same slowdown when sharing the sys-
tem. Moreover, most of these schemes are also subject to
high throughput degradation and fail to effectively deal with
user priorities.

In this work we propose ACFS, an asymmetry-aware com-
pletely fair scheduler that seeks to optimize fairness while
ensuring acceptable throughput. Our evaluation on real
AMP hardware, and using scheduler implementations on
a general-purpose OS, demonstrates that ACFS achieves
an average 11% fairness improvement over state-of-the-art
schemes, while providing better system throughput.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management–Scheduling

Keywords
Asymmetric multicore, scheduling, operating systems, CFS

1. INTRODUCTION
Single-ISA asymmetric CMPs (AMPs) combine several

core types with the same instruction-set architecture but dif-
ferent microarchitectural features. Asymmetric designs have
been shown to significantly improve energy and power effi-
ciency over symmetric CMPs [7]. Notably, combining just
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two core types (high-performance big cores with low-power
small ones) simplifies the design and is enough to obtain
most benefits from AMPs [7]. The ARM big.LITTLE pro-
cessor [2] and the Intel Quick-IA prototype [4] demonstrate
that major hardware players are following this approach.

Despite their benefits, AMPs pose significant challenges to
the system software. One of the main challenges is to effi-
ciently distribute big-core cycles among the various applica-
tions running on the system. This task can be accomplished
by the OS scheduler [13, 10, 6]. Most existing scheduling
schemes have focused on maximizing the system throughput
[7, 13, 10, 6]. To this end, the scheduler needs to map to big
cores those applications that use these cores efficiently, since
they derive performance improvements (speedup) relative to
running on small cores [3, 7].

Maximizing throughput alone, however, may give rise to
various issues. First, an application may experience very
different completion time from run to run, since in one run
it may be mapped to a big core the whole time and relegated
to a small one in another depending on the co-running ap-
plications [8, 13]. Second, the end user naturally expects
that applications with equal priorities get equal slowdowns
as a result of sharing the platform. This is not usually the
observed behavior in AMPs if the scheduler only seeks to
maximize throughput [12]. Third, in scenarios with imposed
QoS constraints trading-off throughput for fairness may be
in order to improve user experience.

Previous research has shown that some of these issues can
be mitigated via fairness-aware scheduling for AMPs [3, 8,
12, 14]. In this work, we demonstrate that existing fairness
schemes are either subjected to high throughput degrada-
tion or do not constitute effective priority-based schemes.
Notably, many of these techniques do not exploit the fact
that applications in a multiprogram workload may derive
different benefit from using the big cores in the AMP. As a
result, they constitute suboptimal fairness solutions [12, 14].

To address these shortcomings, we propose an Asymmetry-
aware Completely Fair Scheduler (ACFS), which seeks to op-
timize fairness while maintaining acceptable system through-
put. We implemented ACFS in the Linux kernel1 and eval-
uated it using real asymmetric hardware. Notably, our pro-
posal effectively enforces user priorities and does not require

1We implemented ACFS on top of the asymmetry-agnostic
Completely Fair Scheduler (CFS).



hardware support nor changes in the applications. Our ex-
perimental evaluation reveals that ACFS improves fairness
by 11% compared to state-of-the-art schedulers [8, 14, 12]
and at the same time improves throughput by 5%.

The rest of the paper is organized as follows. Section 2
discusses background and related work. Section 3 outlines
the design of the ACFS scheduler. Section 4 showcases our
experimental results and Section 5 concludes.

2. BACKGROUND AND RELATED WORK
In this section we first discuss the interrelationship be-

tween fairness and system throughput on AMPs. We then
cover scheduling proposals that seek to optimize throughput
and outline those schemes designed to improve fairness.

2.1 Throughput and fairness on AMPs
To quantify throughput on AMPs, previous work [12] has

employed the Aggregate SPeedup (ASP) metric:

ASP =

n∑
i=1

(
CTslow,i

CTsched,i
− 1

)
(1)

where n is the number of applications in the workload, CTslow,i

is the completion time of application i when it runs alone
in the AMP and uses small cores only, and CTsched,i is the
completion time of application i under a given scheduler.
The ASP metric captures the overall efficiency that a work-
load derives from the various cores in an AMP.

Previous research on fairness for CMPs [5] and AMPs [14,
12] define a scheme as fair if equal-priority applications in
a multi-program workload suffer the same slowdown due to
sharing the system. To cope with this notion of fairness, we
turned to the lower-is-better unfairness metric [5]:

Unfairness =
MAX(Slowdown1, ..., Slowdownn)

MIN(Slowdown1, ..., Slowdownn)
(2)

where Slowdowni = CTsched,i/CTfast,i, and CTfast,i is the
completion time of application i when running alone in the
AMP (with all the big cores available).

In [12] the authors build a theoretical model to approx-
imate fairness and throughput for different scheduling al-
gorithms, and carried out a study that demonstrates that
fairness and system throughput constitute conflicting ob-
jectives on AMPs. Specifically, the study considers two
asymmetry-aware schedulers. The former, denoted as HSP
(High-SPeedup) [7, 6], optimizes throughput by devoting big
cores to run applications in the workload that experience
the greatest big-to-small speedups. The latter, referred to
as Opt-Unfairness, constitutes a theoretical algorithm which
ensures the maximum throughput (ASP) attainable for the
optimal unfairness. The analysis reveals that HSP optimizes
the aggregate speedup at the expense of degrading fairness
significantly. Conversely, Opt-Unfairness usually needs to
sacrifice throughput to achieve the optimal unfairness.

2.2 Throughput optimization and speedup
To maximize throughput in multi-application scenarios,

previous research has demonstrated that the scheduler must
follow the HSP approach, namely it must preferentially run
on big cores those applications that derive a higher benefit
or speedup from big cores. Note that for single-threaded
programs, the speedup matches the speedup factor (SF) of

its single runnable thread, defined as
IPSbig

IPSsmall
, where IPSbig

and IPSsmall are the thread’s instructions per second ratios
achieved on big and small cores respectively.

The main difference between the available variants of the
HSP approach [7, 3, 6, 10, 13, 11] lies in the mechanism
employed to obtain threads’ speedup factors online. Three
techniques have been explored to do so. The first approach
boils down to measure SFs directly [7, 3], which entails run-
ning each thread on big and small cores to track the IPC
(instructions per cycle) on both core types. Previous work
has demonstrated that this approach, known as IPC sam-
pling, is subjected to inaccuracies in SF estimation associ-
ated with program-phase changes [13]. The second approach
relies on estimating a thread’s SF using its runtime proper-
ties collected on any core type at runtime using performance
counters [6, 10, 11]. The third technique is PIE [15], a
hardware-aided mechanism enabling accurate SF estimation
from any core type. Notably, the required hardware support
for PIE has not yet been adopted in commercial systems,
and so scheduler implementations on existing asymmetric
hardware, as the ones we considered in this work, cannot
benefit from this approach. In addition, recent research has
highlighted that PIE poses several problems that make it
difficult to be deployed on actual hardware [9].

Due to the limitations of IPC sampling and PIE, we opted
to use the second approach when implementing ACFS, which
also factors in thread’s SFs when making scheduling deci-
sions. Specifically, to determine a thread’s SF online, ACFS
feeds an estimation model with values from diverse perfor-
mance metrics collected over time2 (such as the IPC or the
last-level-cache miss rate). In this work, we used a variant
of the technique proposed in [11] to aid in the construction
of platform-specific SF estimation models.

Recent research has highlighted that making scheduling
decisions based on per-thread SFs only may lead to seri-
ous throughput degradation when multithreaded programs
are included in the workload [11]. This stems from the fact
that the SF does not approximate the overall benefit that
a multithreaded application as a whole derives from using
the big cores in an AMP [1, 11]. Catering to application-
wide speedups is the key to optimize throughput in these
workload scenarios [1, 10, 12]. Previous research [10, 12]
has devised analytical formulas to approximate the speedup
for several types of multithreaded applications based on the
runnable thread count (a proxy for the amount of thread-
level parallelism in the applications), the SF of the applica-
tion threads and the number of big cores in the AMP. We
turned to these formulas to approximate the speedup for
multithreaded applications in ACFS’s implementation.

2.3 Fairness and priority enforcement
The first approach to fairness-aware scheduling on AMPs

was an asymmetry-aware round-robin (RR) scheduler that
simply fair-shares big cores among applications [3]. Fair-
sharing big cores has been shown to provide better perfor-
mance than that of default schedulers on general-purpose
OSes, which are asymmetry agnostic, and also provides more
repeatable completion times across runs [8]. For this reason,
RR has been widely used as a baseline for comparison [3, 10,
11]. Notably, recent research has shown that RR constitutes
a suboptimal fairness solution [12], as it does not consider

2In our setting, performance counters are sampled per-CPU
every 200ms. We observed that the overhead associated with
sampling and SFs estimation becomes negligible at this rate.



application speedups when making scheduling decisions.
Li et. al [8] proposed A-DWRR, which aims to deliver

fairness on AMPs by factoring in the computational power
of the various cores when performing per-thread CPU ac-
counting. To that end, it relies on an extended concept of
CPU time for AMPs: scaled CPU time. Using scaled CPU
time, CPU cycles consumed on a big core are worth more
than on a small one. To ensure fairness, A-DWRR evens
out the scaled CPU time consumed across threads in accor-
dance to their priorities. As opposed to ACFS, A-DWRR
does not take into account that applications derive differ-
ent (and possibly varying) speedups when using big cores in
the platform. As our experimental results reveal, this leads
A-DWRR to degrading both fairness and throughput.

The Prop-SP scheduler [12] was designed to overcome A-
DWRR’s main limitations. Prop-SP strives to even out the
slowdown experienced by equal-priority applications (fair-
ness), while maintaining acceptable system throughput. To
make this possible, each application receives big-core cycles
in proportion to the product of its speedup and its priority.
Unlike ACFS, Prop-SP is unable to provide a configurable
fairness/throughput trade-off and, as our experiments re-
veal, is subjected to high unfairness in some cases.

In [14] the authors devise an EQual-Progress (EQP) sched-
uler that seeks to optimize fairness on AMPs. As ACFS,
EQP continuously tracks the slowdown that each thread in
the workload experiences at runtime and tries to enforce fair-
ness by evening out observed slowdowns. We found that the
EQP scheduler poses several limitations. First, when deter-
mining a thread’s slowdown, EQP does not factor in the past
speedup phases the thread underwent. Instead, the slow-
down is approximated by taking into account the total num-
ber of cycles that the thread has consumed on each core type
thus far and the current SF3. Second, EQP was designed to
achieve equal slowdown across threads, and so it only takes
into account the SF of individual threads when computing
slowdowns. We observed that ensuring that each thread in
the system experiences a similar slowdown does not guaran-
tee equal slowdowns among applications when multithreaded
programs are included in the workload. Third, the EQP
scheduler does not support user priorities. Our proposal,
described in the next section, overcomes these limitations.

3. DESIGN
ACFS assigns threads to big and small cores so as to pre-

serve load balance in the AMP, and periodically migrates
threads between cores to ensure that running applications
experience equal slowdown. To keep track of applications’
slowdowns, the scheduler assigns each thread a counter called
amp_vruntime. For single-threaded programs, the counter
associated with the single-runnable thread tracks how much
progress the application has made thus far with respect to
the progress that would have resulted from running it on
a big core the whole time. For multithreaded applications,
each thread’s amp_vruntime represents the relative progress
that the thread has made in the AMP with respect to other
threads of the same application. When a thread runs for a
clock tick on a given core type, ACFS increments the thread’
amp_vruntime by ∆amp_vruntime, defined as follows:

3EQP relies on either IPC sampling or PIE to estimate SFs.
Since PIE is not available on existing asymmetric hardware,
in this work we evaluated the IPC-sampling variant of EQP.

∆amp_vruntime =
100 ·Wdef

Score ·Wt
(3)

where Wt is the thread’s weight, derived directly from the
application priority (set by the user); Wdef is the weight of
applications with the default priority; Score is the slowdown
factor. Note that when a thread runs on the big core, Score =
1. When it runs on a small one, Score = SBS, where SBS rep-
resents the speedup that the application this thread belongs
to derives from using the big cores on the AMP, relative
to using small cores only. As explained in Section 2.2, SBS

is estimated at runtime by ACFS for both single-threaded
and multithreaded programs taking into account the appli-
cation’s current runtime characteristics. Since SBS may vary
over time as the application goes through different program
phases, catering to the varying speedup is essential to accu-
rately track the relative progress throughout the execution.

To illustrate the intuition behind Eq. 3 let us consider two
single-threaded applications (A and B) running on an AMP
with one big and one small core. Suppose further that both
applications have the default priority (Wdef = Wt) and run
twice as fast on a big core than on a small one (SBS = 2).
To maintain load balance, ACFS could initially map A to
the big core and B to the small one. In this scenario, as A
runs, its amp_vruntime increases by 100 units per tick. In
contrast, B’s amp_vruntime increases by 50 units per tick
only (according to Eq. 3), which reflects that A makes twice
the progress of B. Clearly, if the thread-to-core mapping
does not change, the difference between amp_vruntimes will
increase over time and so will unfairness in the AMP system.

ACFS aims to enforce fairness by evening out the amp_vrun-
time across threads4. To make this possible it may need to
perform thread swaps (migrations) between different core
types every so often. Because frequent thread migrations
may introduce significant overheads, the scheduler does not
trigger a thread swap as soon as it detects that a thread TB

running on a big core has a greater amp_vruntime than that
of a thread TS running on a small core. Instead, the ACFS
scheduler swaps TB and TS in the event (amp_vruntimeTB

−
amp_vruntimeTS

) ≥ amp_threshold. Increasing the amp-

_threshold makes it possible to effectively reduce the thread-
swap frequency thus mitigating migration overheads. How-
ever, very high threshold values may lead to accumulating
unfairness for longer periods. To cater to this tradeoff,
we performed a sensitivity study and found that a value
of vruntime_threshold that enforces an average swap rate
of 850ms ensures an acceptable trade-off in our experimen-
tal setting. To achieve a target average swap rate Tswap,
more suitable for other experimental settings, the associated
threshold can be approximated as follows:

amp_threshold = 100 · Tswap

Ttick
·
(

1 − 1

SFavg

)
(4)

where SFavg denotes the average speedup factor observed in
the platform, and Ttick represents the tick length.

Despite ACFS’s design has been described in terms of big
and small cores, it could be augmented to work on AMPs
with more types of cores. To this end, the definition of the
slowdown factor (Score) must be extended to n core types.

4Note than when a thread enters the system its
amp_vruntime is set to the maximum amp_vruntime value
observed among threads in the system. This initial value en-
ables a fair comparison between amp_vruntimes for threads
that entered the system at different points in time.



Table 1: Multi-application workloads

Workload Benchmarks
4STH calculix, gamess, GemsFDTD, bzip2
3STH-1STL gamess, GemsFDTD, bzip2, sjeng
2STH-2STM gamess, soplex, povray, h264ref
2STH-2STL mcf, calculix, sjeng, gobmk
1ST{H,M}-2STL mcf, h264ref, sjeng, gobmk

3STH-1HPH hmmer, gobmk, h264ref, fma3d_m(9)
1ST{H,M,L}-1PSH gamess, astar, soplex, blackscholes(9)
2PSH-1HPM BLAST(4), semphy(4), wupwise_m(4)
1PSH-1PSL semphy(6), FFTW3D(6)
1PSH-1HPH BLAST(6), fma3d_m(6)

3.1 Throughput-fairness trade-off
Using the theoretical model presented in [12] and assum-

ing perfect speedup estimations, we found that the base
ACFS design described thus far behaves just like the Opt-
Unfairness theoretical scheduler (see Section 2.1) for multi-
application workloads consisting of single-threaded programs.
In other words, it provides the maximum throughput attain-
able for the optimal unfairness in this scenario.

To make it possible for the system administrator to trade
fairness for throughput, we augmented ACFS with the un-

fairness_factor (UF) knob. When this knob is set at its
default value (1.0), the scheduler behaves as the base im-
plementation, hence attempting to achieve the maximum
throughput attainable for the optimal unfairness. For UF
values greater than the default setting, the ACFS scheduler
increases throughput at the expense of degrading fairness
up to a certain extent. Intuitively, making this possible
boils down to gradually increasing the big-core share for
those applications in the workload with a higher speedup
while reducing the big-core share of the remaining ones.
The main challenge is how to gradually improve through-
put while keeping fairness under control. To this end, we
factor in the UF when updating a thread’s amp_vruntime

every tick, which entails re-defining ∆amp_vruntime as follows:

∆amp_vruntime =
100 ·Wdef

Score ·Wt ·
(

1 + (UF−1)·(SBS−Smin)
Smax−Smin

) (5)

where Smax and Smin are the maximum and minimum speedups
(SBSs) observed among applications in the workload, respec-
tively. Intuitively, with this new definition of ∆amp_vruntime,
the amp_vruntime of high-speedup threads increases at a
slower pace than that of low-speedup threads, which results
in a higher big-core share for high-speedup applications and,
in turn, in higher system throughput.

Using the analytical model presented in [12], we observed
that gradually increasing the unfairness_factor (UF) for
a workload leads to throughput gains while ensuring unfair-
ness no greater than UF ·opt, where opt denotes the optimal
unfairness for the workload in question. Notably, this ideal
unfairness value can be only reached with perfect speedup
estimates. In Section 4.C, we analyze the effect of varying
the UF in more realistic scenarios.

4. EXPERIMENTAL EVALUATION
We carried out an extensive comparison of ACFS with

several state-of-the-art schedulers for AMPs: HSP [6, 11],
Prop-SP [12], EQP [14], RR [3] and A-DWRR [8]. We im-
plemented all scheduling algorithms in the Linux kernel 3.2.

For the evaluation we used the Intel QuickIA prototype
system [4]. This platform consists of a dual socket UMA
system featuring two multicore processors: a quad-core In-

tel Xeon E5450 processor, where cores operate at 1.2Ghz;
and a dual-core Intel Atom N330 processor, where cores run
at 1.6Ghz. To reduce shared-resource contention effects for
the experiments we disabled one core on each die in the
Xeon processor. This setting gives us a paring of two high-
performance big cores (E5450) with two low power small
ones (N330). We will refer to this asymmetric configura-
tion as 2B-2S. Observed speedup factors for single-threaded
programs on this platform range from 1.0 to 4.7.

To run workloads including multithreaded applications we
opted to use an AMP configuration with a greater core count
than that of 2B-2S. To this end, we also experimented with a
NUMA multicore server that integrates two AMD Opteron
2425 hex-core processors. On this platform we emulated
an AMP system consisting on 2 big cores and 10 small
ones (2B-10S) by reducing the processor frequency on some
cores; specifically, “big” cores on 2B-10S operate at 2.1GHz
whereas “small” cores run at 800MHz. On this configuration
we observe a range of speedup factors between 1.74 and 2.62.

Our evaluation targets multi-application workloads con-
sisting of benchmarks from diverse suites (SPEC CPU2006,
OMP 2001, PARSEC and Minebench). We also experi-
mented with BLAST – a bioinformatics benchmark; and FFTW3D

- a program performing the FFT. In all experiments, the
total thread count in the workload was set to match the
number of cores in the platform, since this is how runtime
systems typically set the number of threads for CPU-bound
workloads like the ones we used. In multi-application exper-
iments, we ensure that all applications are started simulta-
neously and when an application terminates it is restarted
repeatedly until the longest application in the set completes
three times. We then obtain the aggregate speedup and un-
fairness for the scheduler in question, by using the geometric
mean of the completion times for each program.

A) Applications with the same priority. We begin by an-
alyzing the effectiveness of the various schedulers for multi-
application workloads consisting of sequential and parallel
programs with the same priority. In creating the workloads,
we categorized applications into three groups with respect to
their parallelism: highly parallel (HP), partially sequential
(PS) –parallel programs with a serial component of over 25%
of the total execution time– and single threaded (ST). We
further divided the three aforementioned application groups
into three subclasses based on their SFs – high (H), medium
(M) and low (L). The selected program mixes, shown in Ta-
ble 1, mimic scenarios with different SF ranges and varying
degree of competition for the scarce big cores in the AMP.
Note that the workload name encodes the category of each
application, as observed on the AMP system where we ran
the workload. (The first five workloads are evaluated on the
2B-2S system; the remaining ones were run on 2B-10S.) For
multithreaded applications, the number in parentheses by
each program’s name is the number of threads it runs with.

Figure 1 shows the results for the first five workloads, con-
sisting of single-threaded applications only running on 2B-
2S. Overall, the scheduler that optimizes throughput (HSP)
effectively obtains the best aggregate speedup, but that comes
at the expense of delivering the worst unfairness numbers
(the higher, the worse) across the board. As for RR and A-
DWRR, both schemes fair-share big cores among threads in
this scenario, and so they perform similarly in most cases.
As evident, fair-sharing big cores may lead to throughput
and fairness degradation, especially for workloads exhibit-
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Figure 1: Fairness and throughput on 2B-2S (Intel QuickIA)
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Figure 2: Fairness and throughput on 2B-10S (AMD platform)

ing a wide range of big-small speedups (e.g., 3SH-1STL and
2STH-2ST). In addition, the results highlight that Prop-SP
is able to achieve a better balance between throughput and
fairness than that of HSP. However, Prop-SP is still sub-
jected to high unfairness in some cases (e.g., 2STH-2STL).

Now we zoom in on the results for the EQP and ACFS
schedulers, which strive to optimize fairness. As evident,
EQP is not able to obtain lower unfairness than RR or A-
DWRR for all workloads, thus failing to achieve its main
goal. We found that this primarily stems from the inac-
curacies associated with the mechanism employed by EQP
to keep track of threads’ slowdowns, as pointed out in Sec-
tion 2.3. Moreover, EQP is subjected to high SF mispre-
dictions that come from its reliance on IPC sampling on
off-the-shelf AMPs. IPC sampling has been shown to lead
to inaccurate SFs, since IPC values collected on each core
type may belong to different program phases [13]. Evaluat-
ing a real-world implementation of EQP enabled us to ob-
serve this issue. (Note that in the original work [14], EQP
was simulated.) The ACFS scheduler, on the contrary, pre-
dicts a thread’s SF by means of an estimation model that
uses performance metrics collected on the current core type
via hardware counters, so it is not subject to the aforemen-
tioned program-phase issues. The SF estimation model we
derived for the Intel QuickIA provides ACFS with SF esti-
mates with correlation coefficients of 0.94 and 0.93 for SPEC
CPU benchmarks on the big and the small core respectively.
The results reveal that, despite the existing inaccuracies in
the SF model, ACFS is able to obtain the best unfairness
figures across the board. In particular, it reduces unfairness
by 11% on average compared to EQP, RR and A-DWRR,
while obtaining a 5% average increase in throughput. To
evaluate the impact of SF inaccuracies on ACFS, we also ex-
perimented with a static version of ACFS (ACFS-S), where
the scheduler is fed with applications’ SFs measured offline
for the entire execution. As evident, perfect overall SF val-
ues make it possible to reduce unfairness even further. This
fact underscores that high accuracy in speedup estimation
is paramount when it comes to delivering fairness on AMPs.

We now turn our attention to the results for workloads
that include parallel and sequential applications running on
2B-10S (Figure 2). For HSP, PropSP and ACFS, we ob-
served similar trends than those of workloads on 2B-2S:
ACFS achieves the best fairness figures across the board
while HSP and Prop-SP obtain slightly better throughput at
the expense of degrading fairness. In this scenario, the three
schedulers make scheduling decisions by taking into account

the speedup the application as a whole derives from using
big cores available on the AMP. EQP, on the other hand,
aims to achieve equal slowdown across threads by consid-
ering the SF of individual threads only. However, ensuring
that each thread in the system experiences a similar slow-
down does not ensure equal slowdowns among applications
when multithreaded programs are included in the workload.
Failing to consider the application-wide speedup leads EQP
to higher fairness degradation than ACFS.

Finally we look at the results of A-DWRR and RR on
2B-10S. A-DWRR ensures that each thread in the workload
receives the same AMP-scaled CPU time, regardless the ap-
plication it belongs to; as such, programs with a high thread
count receive a high big-core share. RR, by contrast, fair-
shares big cores among applications. Because applications
with a high thread count usually derive low speedup from
the scarce big cores [10, 1], A-DWRR is subject to higher
throughput and fairness degradation than RR.

B) Applications with different priorities. We now assess
the effectiveness of the schemes that support user-defined
priorities (A-DWRR, Prop-SP and ACFS) in scenarios where
applications with different priorities coexist in the 2B-2S
configuration. Specifically, we experimented with a work-
load featuring two high-speedup applications (gamess and
bzip2), one mid-speedup program (h264ref) and a low-
speedup one (gobmk). Such a diverse workload enables us
to explore how different applications can be accelerated as
the priority increases and how unfairness is affected.

Our experiments consist in gradually increasing the pri-
ority of one selected high-priority application (HPA) while
keeping the priority of the remaining applications at the de-
fault setting. For each selected HPA, we gradually increase
its priority so that the associated weight (Wt) increases in
steps of 25%. Figure 3 shows the results. The x-axis indi-
cates the selected HPA; the associated weight Wt, derived
directly from the application priority, is specified in paren-
theses. For the different priority settings, we report un-
fairness and the HPA’s relative speedup. Since we observed
very similar trends for the two single-threaded high-speedup
programs, we omitted the results for bzip2. Note that the
HPA speedup is normalized to A-DWRR in the scenario
when all applications have the same priority or weight. This
enables us to track by how much the HPA speeds up with
the priority. Notably, to factor in application priorities in
the unfairness metric (as in [5]), we replaced slowdowns in
Eq. 2 with their weighted counterparts: Wt · Slowdownapp.

As evident, all schedulers are able to reduce the comple-
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Figure 3: Results for applications with different priorities.
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tion time of the HPA as the priority increases. This stems
from the fact that they all gradually increase the HPA’s big-
core share with the priority. Notably, the results reveal that
only ACFS is able to maintain low unfairness as the HPA’s
priority increases. Prop-SP and A-DWRR, by contrast, are
subjected to high fairness degradation. Throughput results,
omitted due to space constraints, reflect similar trends to
those observed in scenarios with equal-priority applications.

C) Trading fairness for throughput. Recall that the ACFS
scheduler is equipped with the unfairness_factor (UF)
knob, which empowers the user with a means to provide a
configurable balance between fairness and the system through-
put extracted from the AMP. Figure 4 shows how the UF
choice affects fairness and throughput for three selected work-
loads (Table 1). Both metrics have been normalized to the
(0,1) interval where 0 represents the minimum value attain-
able for the metric in the platform and 1 the maximum value.
The results reveal that the default and lowest possible set-
ting for the UF (1.0) provides the best fairness figures, while
higher UF values always lead to throughput gains at the ex-
pense of degrading fairness. Notably, the trends illustrate
that by gradually increasing the UF, the ACFS scheduler can
get closer to the HSP scheduler which optimizes throughput.

5. CONCLUSIONS
In this paper we proposed ACFS, a scheduler that seeks

to optimize fairness on AMPs while maintaining acceptable
system throughput. To this end, ACFS evens out the slow-
down that the various applications in a multi-program work-
load experience as a result of sharing the asymmetric sys-
tem. To track the slowdown accumulated by an applica-
tion over time, the scheduler takes into account the relative
benefit (speedup) that the application derives from using
the big cores in the AMP as it goes through different pro-
gram phases. Our experimental evaluation, using real hard-
ware and scheduler implementations in the Linux kernel,
reveals that ACFS is able to reduce unfairness by 11% on
average compared to the RR, A-DWRR and EQP schemes,
while providing higher system throughput. We also demon-
strated that previous schedulers that support user priori-
ties on AMPs, such as Prop-SP, are subject to high fairness
degradation in the event applications with different priori-
ties coexist on the system; ACFS, by contrast, ensures low
unfairness in this scenario. Key elements for the success of
ACFS are the mechanism used to keep track of the slowdown
accumulated by the applications and its reliance on online
estimation models to approximate speedup factors.
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