
Delivering Fairness and Priority Enforcement on
Asymmetric Multicore Systems via OS Scheduling

Juan Carlos Sáez Fernando Castro Daniel Chaver Manuel Prieto
Department of Computer Architecture. School of Computer Science

Complutense University of Madrid
∗

{jcsaezal,fcastror,dani02,mpmatias}@pdi.ucm.es

ABSTRACT

Symmetric-ISA (instruction set architecture) asymmetric-
performance multicore processors (AMPs) were shown to
deliver higher performance per watt and area than symmet-
ric CMPs for applications with diverse architectural require-
ments. So, it is likely that future multicore processors will
combine big power-hungry fast cores and small low-power
slow ones. In this paper, we propose a novel thread schedul-
ing algorithm that aims to improve the throughput-fairness
trade-off on AMP systems. Our experimental evaluation
on real hardware and using scheduler implementations on a
general-purpose operating system, reveals that our proposal
delivers a better throughput-fairness trade-off than previous
schedulers for a wide variety of multi-application workloads,
including single-threaded and multithreaded applications.

Categories and Subject Descriptors

D.4.1 [Process Management]: Scheduling; C.1.3 [Processor

Architectures]: Other Architecture Styles—Heterogeneous
(hybrid) systems

General Terms

Algorithms, Performance, Measurement

Keywords

Asymmetric Multicore, Operating Systems, Scheduling

1. INTRODUCTION
Asymmetric multicore processors (AMP) [3] were pro-

posed as a more power-efficient alternative to conventional
multicore processors that consist of identical cores. An AMP
contains at least two core types,“fast”and“slow”, which sup-
port the same instruction-set architecture, but differ in mi-
croarchitectural features, size, power consumption and per-
formance. Early studies have demonstrated that having just
two core types is sufficient to extract most of the benefits
from AMPs [3] and simplifies their design. For that reason,
in this work we target AMP systems with two core types.

∗This research was funded by the Spanish government’s re-
search contracts TIN2012-32180 and the Ingenio 2010 Con-
solider ESP00C-07-20811.

Copyright is held by the author/owner(s).
SIGMETRICS’13, June 17–21, 2013, Pittsburgh, PA, USA.
ACM 978-1-4503-1900-3/13/06.

Most existing proposals on scheduling for AMPs strive to
maximize the system thoughput [5, 2]. Pursuing other im-
portant goals such as delivering fairness or priority enforce-
ment on AMPs has drawn less attention from the research
community. Schedulers such as RR [5] or A-DWRR [4] aim
to provide fairness by alloting the same amount of hetero-
geneous CPU share to equal-priority applications. However,
because applications in a multiprogram workload may derive
different benefit from using the fast cores in an AMP, assign-
ing the same heterogeneous CPU share to equal-priority ap-
plication does not ensure an even slowdown (due to sharing
the AMP) across applications. In addition, not taking into
account the diversity in relative speedups may lead to de-
grading the system throughput significantly [5]. To address
these shortcomings, we propose Prop-SP, a novel scheduling
algorithm that supports priority enforcement on AMPs and
attempts to even out the slowdown experienced by equal-
priority applications due to sharing the system, while ensur-
ing a high system throughput. Prop-SP is equipped with
support to effectively accelerate some types of parallel ap-
plications on AMPs. We evaluated Prop-SP using real hard-
ware and compared it against other scheduling schemes.

2. DESIGN
The Prop-SP scheduler assigns threads to fast and slow

cores so as to preserve load balance in the AMP system,
and migrates threads among fast and slow cores to ensure
that they run on fast cores for a specific amount of time.

To enforce that threads receive a specific fast-core share,
Prop-SP relies on a mechanism inspired by Xen’s Credit
Scheduler [1]. At a high level, this mechanishm works as fol-
lows. Each thread has a fast-core credit counter associated
with it. When a thread runs on a fast core it consumes cred-
its. Threads that have fast-core credits left (i.e., their credit
counter is greater than zero) are preferentially assigned to
fast cores by the scheduler.

Every so often, the OS triggers a credit assignment process
that allots fast-core credits to active applications (i.e., with
runnable threads). Each application receives credits in pro-
portion to its dynamic weight, which is defined as the prod-
uct of its priority and its net speedup (speedup minus one).
The application priority is set by the user. The speedup in-
dicates the relative benefit that the application would derive
if all fast cores in the AMP were devoted to running threads
from this application, with respect to running all threads on
slow cores. This speedup is estimated at runtime by Prop-
SP without the user intervention. For single-threaded ap-
plications, determining the speedup entails determining the



Table 1: Metrics to assess throughput and fairness

for a workload consisting of n applications running

simultaneously under a given thread scheduler.
Metric Definition
CTfast,app Completion time of application app

when running alone in the system
(with all the fast cores available)

CTslow,app Completion time of application app
when it runs alone in the system but
using slow cores only

CTsched,app Completion time of application app
in the multiprogram workload run-
ning under a given scheduler.

Slowdownapp CTsched,app/CTfast,app

Aggregate Speedup
∑n

i=1

(

CTslow,i

CTsched,i
− 1

)

Unfairness
MAX(Slowdown1,...,Slowdownn)

MIN(Slowdown1,...,Slowdownn)

speedup factor (SF) of its single runnable thread:
IPSfast

IPSslow
,

where IPSfast and IPSslow are the thread’s instructions per
second ratios achieved on fast and slow cores respectively.
To this end we leverage the technique proposed in [5]. For
multithreaded programs, several factors in addition to the
SF must be taken into account to estimate the speedup, such
as the amount of thread-level parallelism (TLP).
Credits awarded to the application are distributed among

its runnable threads. For single-threaded programs, this
boils down to increasing the fast-core credit counter of its
single thread by the amount of credits awarded. For multi-
threaded programs, Prop-SP supports several credit distri-
bution schemes to meet the needs of diverse applications.

3. RESULTS AND CONCLUSIONS
We assessed the effectiveness of two variants of Prop-SP

(static and dynamic), which follow different approaches to
determine a thread’s SF. The base implementation of Prop-
SP, referred to as Prop-SP (dynamic), estimates SFs on-
line using hardware counters (using the technique from [5]).
Prop-SP (static), on the other hand, asummes a constant SF
value for each thread, measured prior to the execution. We
compare both versions of Prop-SP against the RR (Round
Robin) scheduler, which simply fair-shares fast cores among
all applications in the workload, and HSP (High-SPeedup) [2,
5], which aims to maximize the system throughput by map-
ping to fast cores those applications that derive the greatest
performance benefit from these cores.
All the evaluated algorithms have been implemented in

the Solaris kernel and tested on real multicore hardware
made asymmetric by reducing the processor frequency of
a subset of cores in the platform. Figure 1 shows the re-
sults for various multi-application workloads consisting of
both single-threaded and multithreaded applications run-
ning under the various schedulers. Overall, HSP, yields the
best system throughput but fails to deliver fairness accross
the board. RR, on the other hand, does rather a good job
in terms of both fairness and throughput for workloads in-
cluding single-threaded applications only. However, when
multithreaded applications are present in the workload, it
degrades the system throughput significantly. In contrast,
Prop-SP is able to make efficient use of the AMPs and im-
prove the throughput-fairness tradeoff for a wider range of
workloads. Moreover, the potential inacuracies of the SF

Figure 1: Results for various multi-application

workloads running on an AMD-based emulated

AMP system where fast cores run at 2.6Ghz and

slow cores at 0.8Ghz. Both the aggregate speedup

and unfairness metrics are defined in Table 1.

estimation model used by Prop-SP (dynamic), do not pre-
vent this scheduler from reaping benefits similar to those of
the static version. Overall, these benefits are especially pro-
nounced for workloads including multithreaded programs.

We also experimented with scenarios where we gradually
increase the priority of one or several high-priority (HP)
applications in the workload. The results reveal that Prop-
SP is able to effectively reduce the completion time of HP
applications as the priority increases, while ensuring higher
throughput and lower unfairness than RR.

Key elements for the success of Prop-SP are the credit-
based mechanism enabling the scheduler to adjust the fast-
core share alloted to the different programs, its reliance on
estimation models to approximate per-thread speedup fac-
tors (SFs) online and the specific support to accelerate cer-
tain types of multithreaded programs.

4. REFERENCES
[1] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison

of the three CPU schedulers in Xen. SIGMETRICS
Perform. Eval. Rev., 35(2):42–51, Sept. 2007.

[2] D. Koufaty et al. Bias Scheduling in Heterogeneous
Multi-core Architectures. In Proc. of Eurosys ’10, 2010.

[3] R. Kumar et al. Single-ISA Heterogeneous Multi-Core
Architectures: the Potential for Processor Power
Reduction. In Proc. of MICRO 36, 2003.

[4] T. Li et al. Operating system support for
overlapping-ISA heterogeneous multi-core architectures.
In HPCA’10, pages 1–12, 2010.

[5] J. C. Saez et al. Leveraging core specialization via OS
scheduling to improve performance on asymmetric
multicore systems. ACM Trans. Comput. Syst.,
30(2):6:1–6:38, Apr. 2012.


