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LFOC+: A Fair OS-level Cache-Clustering Policy
for Commodity Multicore Systems
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Abstract—Commodity multicore systems are increasingly adopting hardware support that enables the system software to partition the
last-level cache (LLC). This support makes it possible for the operating system (OS) or the Virtual Machine Monitor (VMM) to mitigate
shared-resource contention effects on multicores by assigning different co-running applications to various cache partitions. Recently
cache-clustering (or partition-sharing) strategies have emerged as a way to improve system throughput and fairness on new platforms
with cache-partitioning support. As opposed to strict cache-partitioning, which allocates separate cache partitions to each application,
cache-clustering allows partitions to be shared by a group of applications.
In this article we propose LFOC+, a fairness-aware OS-level cache-clustering policy for commodity multicore systems. LFOC+ tries to
mimic the behavior of the optimal cache-clustering solution for fairness, which we could obtain for different workload scenarios by using
a simulation tool. Our dynamic cache-clustering strategy continuously gathers data from performance monitoring counters to classify
applications at runtime based on the degree of cache sensitivity and contentiousness, and effectively separates cache-sensitive
applications from aggressor programs to improve fairness, while providing acceptable system throughput.
We implemented LFOC+ in the Linux kernel and evaluated it on a real system featuring an Intel Skylake processor, where we compare
its effectiveness to that of four previously proposed cache-clustering policies. Our experimental analysis reveals that LFOC+ constitutes
a lightweight OS-level policy and improves fairness relative to two other state-of-the-art fairness-aware strategies –Dunn and LFOC–,
by up to 22% and up to 20.6%, respectively, and by 9% and 4.9% on average.

Index Terms—Multicore processors, cache-partitioning, fairness, Intel Cache Allocation Technology, Linux kernel, operating system.
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1 INTRODUCTION

Chip multicore processors (CMPs) currently constitute the
architecture of choice for most general-purpose computing
systems, and they will likely continue to be dominant in
the near future. Despite the advances in technology, which
have made it possible to pack an increasing number of
cores and bigger caches on the same chip, contention on
shared resources on CMPs still poses a big challenge to the
system software. Because cores in a CMP typically share a
last-level cache (LLC) and other memory-related resources
with the remaining cores –such as a DRAM controller and
a memory bus or interconnection network [1], [2]–, applica-
tions running simultaneously on the system may intensively
compete with each other for these shared resources, leading
to substantial performance degradation [3].

Shared-resource contention may introduce a number
of undesirable effects on the system, making it difficult
to enforce system-wide fairness. For example, contention
may cause an application’s completion time to differ sig-
nificantly across runs, depending on its co-runners in the
workload [4], [5]. In addition, due to contention effects,
equal-priority applications may not experience the same
performance degradation when running together relative to
the performance observed when each application runs alone
on the CMP [1], [6]. These issues make it difficult to provide
performance guarantees [7] or prioritize critical applications
without degrading throughput [1], may limit scalability of
parallel applications [2], and may also cause wrong billings
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in commercial cloud-like computing services [5].
Previous research has highlighted that shared-resource

contention effects can be mitigated by effectively parti-
tioning the shared LLC (i.e., dividing the available cache
space among applications). After years of research on cache-
partitioning strategies, the necessary hardware support to
adopt many of these strategies is now available on commod-
ity processors from Intel (via Cache Allocation Technology
- CAT [8]), and AMD (as part of QoS Extensions [9]). On
these platforms, which allow the creation of coarse-grained
cache partitions only and of a somewhat limited number of
partitions, cache-clustering (aka partition-sharing) algorithms
have proven more effective than strict cache partitioning
policies [10], [11]. Cache-clustering constitutes a generaliza-
tion of strict cache partitioning, where, instead of assigning
applications to separate cache partitions, each partition can
be shared by a group (or cluster) of applications [11], [12].

Our work explores how to efficiently leverage OS-level
cache-clustering to improve fairness on commodity mul-
ticores. Our research stands in contrast with recent work
on cache-partitioning, which has proposed mostly user-
level partitioning approaches that deliver fairness [3], or
pursue other objectives, such as system throughput opti-
mization [10], [13] or improving client satisfaction on virtual
environments [14]. In this article we build on our prior
work [15] to advance the state-of-the-art in fairness-aware
cache-clustering. Specifically, we propose a new dynamic
partitioning approach, referred to as LFOC+, that substan-
tially improves the degree of fairness delivered by our previ-
ous proposal –LFOC (Lightweight Fairness-Oriented Cache-
clustering); LFOC+ allows cache-sensitive applications (i.e.,
those that suffer significantly from using reduced cache
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space) to potentially share the same partition with others,
while effectively isolating them from aggressor applications.
Our paper makes the following main contributions:

• Via extensive simulation, we detect that the main
limitations of LFOC come from always assigning
cache-sensitive programs to separate LLC partitions.

• To provide a better support for a wider workload
range, we design a lightweight cache-clustering al-
gorithm that effectively maps (when beneficial) up to
2 cache-sensitive applications to the same partition.

• Based on our proposed cache-clustering algorithm,
we design and implement LFOC+, an OS-level dy-
namic partitioning scheme. Our LFOC+’s imple-
mentation in the Linux kernel makes efficient use
of hardware cache-partitioning extensions at the
OS level, and guides cache-clustering by leverag-
ing performance monitoring counters. In implement-
ing LFOC+, we also adapted the OS-level resource-
management framework [15] to be compatible with
recent versions of the Linux kernel (v5.x series).

• We evaluate LFOC+ on a real system featuring an
Intel Skylake processor. In our extensive evalua-
tion we qualitatively and quantitatively compare
LFOC+ with four state-of-the-art policies: Dunn [3],
KPart [10], CPA [13] and LFOC [15]. Our results
reveal that LFOC+ improves fairness over these poli-
cies for the vast majority of the workload scenarios
considered, and operates in a close range of the opti-
mal fairness solution. In our analysis we also identify
critical design issues of the other approaches, which
lead to fairness degradation in some cases.

• With respect to our previous work [15], we conduct
new simulations and experiments, which cover a
more ample and diverse set of workloads. We also
experiment with data-parallel multithreaded appli-
cations, so as to evaluate LFOC+’s unique support to
deal with this kind of programs.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 presents our
extensive simulation analysis, and describes our proposed
cache-clustering algorithm. Section 4 outlines the design and
implementation of LFOC+. Section 5 covers the experimen-
tal evaluation, and Section 6 concludes the paper.

2 RELATED WORK

A plethora of software and hardware techniques have been
proposed to mitigate the effects of contention in the LLC [3]–
[5], [10], [16]–[19]. Many researchers attempted to address
this problem via cache-partitioning [10], [13], [20]–[23]. A re-
cent survey [16] discusses a wide range of cache-partitioning
approaches for different optimization objectives, such as
improving system throughput [10], [13] or fairness [3], [15].
Notably, some recent proposals attempt to enforce QoS
constraints for latency critical workloads [14], [17], [24].

Cache partitions can be created via specific hardware
support (such as Intel CAT) or by means of software so-
lutions, most of which rely on page-coloring [25]–[29]. The
various hardware strategies employ different techniques to
assign cache ways to different applications; while some of
them rely on the cache replacement policy [30]–[32], others

use set sampling and replicated cache tags [20], [33]. Our
proposed OS-level (also extensible to the VMM) strategy
leverages hardware-aided way-partitioning.

Recent studies [3], [11], [15] have highlighted that on cur-
rent CMPs with way-partitioning support, cache-clustering
algorithms can be very superior in terms of fairness and
throughput than approaches that assign separate partitions
to the various applications (aka. strict cache-partitioning).
Specifically, the fine-grained distribution of the LLC space
that results from sharing a partition among applications,
where the space distribution may not be a multiple of the
way/set size, could lead to better performance and fairness
than what optimal strict cache-partitioning can offer.

UCP [20] is probably the strict cache-partitioning strat-
egy that had a deeper impact on later proposals. UCP relies
on lookahead, an iterative algorithm that distributes the LLC
ways among applications so as to reduce the aggregate
number of LLC misses. As indicated in its detailed pseu-
docode [20], in each iteration lookahead grants a way to the
application that experiences the highest reduction in misses
when receiving that extra way. While the original UCP
policy used applications’ MPKI tables (i.e., Misses per Kilo
Instructions for different cache sizes) as input to lookahead,
recent cache-clustering strategies [10], [15] employ variants
of the algorithm that are fed with other input metrics, such
as the speedup or the slowdown, so as to maximize or
minimize the aggregate value of the metric observed across
applications. LFOC and LFOC+ use applications’ slowdown
tables as input to lookahead, used just in part of its clustering-
related processing. LFOC is known to deliver better fairness
and throughput [11] than UCP, and, unlike UCP, it can still
be applied when the number of co-running applications
exceeds the maximum number of partitions supported by
the hardware (this is the case on our experimental setting).

In this work we compared the effectiveness of LFOC+
to that of LFOC [15] and Dunn [3], which also attempt
to improve fairness. The differences between LFOC and
LFOC+ are explained in detail in Sec. 4. Dunn [3] relies on
grouping applications into clusters, which may overlap, by
applying the k-means clustering method. In creating clusters,
and in determining cluster sizes, Dunn factors in the fraction
of stall cycles due to L2 misses for the various applications.
As we demonstrate in Sec. 5.1 this metric can be very
misleading to approximate an application’s degree of cache
sensitivity, and it sometimes leads Dunn to degrade fairness.

We also provide an experimental comparison of LFOC+
against two throughput-optimized cache-clustering policies:
KPart and CPA. KPart [10] employs an iterative algorithm
that creates and merges application clusters via hierar-
chical clustering. We observed that the distance function
used by KPart to decide which clusters to merge, may
lead to mapping aggressor and cache-sensitive applications
onto the same partition, thus causing substantial fairness
degradation in many cases. CPA was proposed later than
LFOC [13], but has a few aspects in common with it. Specifi-
cally, both LFOC and CPA classify applications into different
categories based on their degree of cache-sensitivity and
contentiousness, and assign aggressor programs to small
partitions. A distinctive feature of LFOC relative to CPA
is the fact that the former effectively confines all aggressor
(streaming) programs in up to 2 LLC partitions that never
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overlap with those used for cache-sensitive programs. In
addition, LFOC and LFOC+ distribute LLC space between
cache-sensitive programs based on their slowdown rather
than by considering the number of applications in each
class. CPA was originally evaluated using a CMP platform
with very different features to those of the one used in our
experiments; ours has a different microarchitecture, more
cores, bigger L2 caches, coarser-grained LLC partitions,
etc. Thanks to the detailed instructions provided by the
authors [13] to utilize CPA on other LLC configurations, we
could evaluate it on our platform. Our evaluation in Sec. 5.1
reveals that LFOC and LFOC+ provide a higher unfairness
reduction than CPA across the board.

Notably, Dunn, KPart and CPA are user-level cluster-
ing approaches, as opposed to LFOC and LFOC+, which
were implemented in the OS kernel. User-level solutions
require at least an extra user process, and may incur higher
overheads due to the use of system calls to access perfor-
mance monitoring counters (PMCs) and cache partitioning
facilities, which are managed by the OS. LFOC and LFOC+
access these facilities directly via a lightweight kernel-level
API, and perform PMC-related processing in a distributed
fashion (on the CPUs where each thread runs). Another
advantage of kernel-level implementations is the fact that
they are aware of high-frequency scheduling-related events
–like context switches– and can react to them immediately.
This allowed us to efficiently implement LFOC+’s specific
support for data-parallel multithreaded applications.

3 CACHE-CLUSTERING ALGORITHMS

In this section we begin by describing the metrics we used
to assess the degree of fairness and throughput of cache-
partitioning strategies. Next, we present some details on the
simulation tool we used to determine the optimal (fairness-
wise) cache-clustering solution for different workloads, and
enumerate the different application classes considered in
our analysis. Then, we discuss the most relevant patterns
detected in the optimal solution, which motivated the de-
sign of our earlier LFOC approach [15]. Finally, we proceed
to motivate and describe our newly proposed, more sophis-
ticated cache-clustering algorithm used by LFOC+.

3.1 Metrics
To measure the performance degradation of an individual
application in a multi-program workload we consider the
Slowdown metric, defined as follows:

Slowdownapp =
CTpart,app

CTalone,app
(1)

where CTpart,app denotes the completion time of appli-
cation app when it runs sharing the system under a given
cache-partitioning scheme, and CTalone,app is the completion
time of the application when running alone on the system.

Previous research on fairness for multicore systems [1],
[3] defines a scheme as fair if equal-priority applications in
a workload suffer the same slowdown as a result of sharing
the system. To cope with this notion of fairness, we employ
the unfairness metric, which has been extensively used in
previous work [1], [2], [5]. For an n-application workload,
this metric (lower-is-better) is defined as follows:

Unfairness = MAX(Slowdown1,...,Slowdownn)
MIN(Slowdown1,...,Slowdownn)

(2)

To better capture the overall impact of a cache-
partitioning approach, the value of the unfairness metric
should be reported along with system throughput figures.
To quantify throughput, we used the STP metric [3], [34]:

STP =
n∑

i=1

(
CTalone,i

CTpart,i

)
=

n∑
i=1

(
1

Slowdowni

)
(3)

3.2 Simulation Tool and Application Classes

To determine the optimal (fairness-wise) cache-clustering
solution for different workload scenarios, we used the paral-
lel algorithm implemented in the PBBCache simulator [11].
This simulation tool has the ability to approximate the
degree of throughput, fairness and other relevant metrics
for a workload under a particular partitioning algorithm,
by leveraging offline-collected application performance data
(e.g., instructions per cycle, LLC miss rate, etc.) obtained on
the target platform for different cache sizes. For the accurate
estimation of an application’s slowdown –necessary to de-
termine the unfairness and the STP– PBBCache accounts for
the performance degradation due to both cache sharing and
memory-bandwidth contention [11]. In assessing the impact
of cache sharing, the simulator employs a variant of the
Whirlpool method [10], [22] that utilizes applications’ LL-
CMPKC (LLC Misses Per Kilo Cycles) curves to determine
how much cache space each application gets when sharing
a cache partition with others. This method [11] is also used
in the implementation of our new LFOC+ proposal.

To obtain the necessary input data for our simulations,
we used PMCs to gather the average value of different run-
time metrics for applications from the SPEC CPU2006 and
CPU2017 suites running alone on a real system featuring an
Intel Skylake processor with an 11-way 27.5MB LLC (more
information on this platform can be found in Sec. 5). The
offline-collected metric values, which correspond to the exe-
cution of the first 150 billion instructions of the benchmarks
with different cache sizes, are used as input to the simulator.
This information is used to determine the optimal solution,
namely, the solution to the optimal cache-clustering prob-
lem [11] that obtains the optimal (minimal) unfairness value
for the maximum throughput (STP) attainable.

Using the offline-collected data we classified applica-
tions into three classes according to their degree of cache
sensitivity and contentiousness: Cache-sensitive, light sharing
and streaming programs. The cache-sensitive category is used
for those programs that experience high performance drops
as we reduce the number of LLC ways allotted to them; this
is not the case for light sharing and streaming applications.
Streaming programs are characterized by exhibiting a low
slowdown for almost all way allocations, while incurring a
high number of LLC misses per cycle. These applications
typically have a low cache reuse rate, and degrade the
performance of cache-sensitive applications co-located on
the same partition [15]. As an example, Fig. 1 shows how
the slowdown and the LLCMPKC vary with the number of
assigned LLC ways for a streaming application (lbm) and
a cache-sensitive one (xalancbmk). Light-sharing programs
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are neither cache sensitive nor aggressive to others (the
working set typically fits in the core’s private cache levels).

3.3 LFOC’s Cache-Partitioning Algorithm

To illustrate the motivation behind our earlier LFOC pro-
posal [15], we analyzed the optimal cache-clustering solu-
tions obtained for 114 randomly built workloads (with 4
to 10 applications each). These mixes combine a varying
number of streaming, light-sharing and cache-sensitive pro-
grams from SPEC CPU2006 and CPU2017. To summarize
the behavior of the optimal, Fig. 2 reports the average appli-
cation count per cluster size, as well as the total number of
clusters –grouped by its size– that the solution builds.

After a thorough analysis of the solutions obtained, we
drew the following three major insights. First, the optimal
cache-clustering for fairness always isolates all streaming
applications in very small clusters. Specifically, more than
94% of streaming application instances are assigned to a
2.5MB cluster (1 way), while the remaining ones are allo-
cated to 5MB clusters (2 ways). Second, light-sharing pro-
grams are mapped to different clusters following a hardly
predictable pattern. Moreover, 90% of these programs are
assigned to 2.5MB clusters. We also observed that moving
individual light-sharing programs to other clusters has al-
most no impact on throughput and fairness. Third, cache-
sensitive applications are predominantly present in big clus-
ters: roughly 70% of these application instances are assigned
to clusters with at least 3 ways (7.5MB). This underscores
that, in optimizing fairness (i.e., minimizing slowdowns)
special care must be taken to fulfill the cache-space require-
ments of cache-sensitive programs. Moreover, in confining
cache-insensitive applications in small clusters, most of the
LLC space can be devoted to cache-sensitive programs.

LFOC’s cache-clustering algorithm, which is depicted in
Alg. 1, leverages some of the aforementioned insights to
enable low-overhead fairness-aware cache partitioning. In
Step 1 it reserves up to 2 LLC partitions to map streaming
programs. The ways str parameter indicates the number
of ways used for any of these partitions, which we set to
1 in light of the behavior of the optimal solution in our
experimental platform. In Step 2 the remaining LLC space
is distributed among cache sensitive applications, which
are then assigned to separate partitions. The size of these
partitions is determined with UCP-Slowdown, namely by
applying the lookahead algorithm of the UCP policy [20]
using as input the slowdown curve for each application
(i.e., slowdown registered for different cache ways). With
this way distribution for cache-sensitive applications LFOC
attempts to fulfill their cache requirements based on the
degree of cache sensitivity. Finally, in Step 3 light-sharing

Algorithm 1 Cache-clustering algorithm used by LFOC

1: Input: ST , CS, and LS represent the sets of streaming
(str), cache-sensitive and light-sharing applications, respec-
tively; max str parts, gaps per str, and ways str are con-
figurable parameters (default values 5 and 3 and 1 respec-
tively ), nr ways is the number of ways of the LLC.

2: function LFOC partitioning(ST , CS, LS, nr ways)
3: if |CS| == 0 then
4: Create a single cluster S consisting of nr ways;
5: Map all applications in ST ∪ LS to S;
6: return {S}
7: Clusters← ∅; StreamingClusters← ∅;

. Step 1: Create as many streaming clusters as needed
8: if |ST | > 0 then
9: parts4str ← min(2, d |ST |

max str parts
e);

10: <r, used> ← <d |ST |
parts4str

e, parts4str ∗ ways str>;
11: else
12: <parts4 str, r, used> ← <0, 0, 0>;
13: for i← 1 to parts4str do
14: Create new cluster C with ways str ways;
15: Map up to r apps from ST to C;
16: Remove assigned apps from ST ;
17: Add C to Clusters and to StrClusters;

. Step 2: Distribute remaining space among apps in CS

. Use CS apps’s slowdown tables as input to lookahead
18: W ← lookahead(CS, nr ways-used);
19: for i← 1 to |CS| do
20: Add a new cluster C with W [i] ways to Clusters;
21: Map application i in CS to C;

. Step 3: Assign apps in LS to existing clusters
22: for each TargetC ∈ StreamingClusters do
23: gaps avail← r − |TargetC| ∗ gaps per str;
24: if |LS| > 0 and gaps avail > 0 then
25: Map up to gaps avail apps from LS to TargetC;
26: Remove assigned apps from LS;
27: Distribute remaining applications in LS in a round-robin

fashion among non-streaming clusters;
28: return Clusters

applications are distributed among the various partitions,
by populating partitions with streaming applications first.

3.4 Fairer LLC Distribution among Sensitive Programs
Given that LFOC assigns cache-sensitive applications to
separate partitions, a question arises as to what extent
fairness could be improved by allowing these applications
to share the same partition. To provide an answer to this
question we conducted additional simulations with 48 ran-
domly built workloads made up exclusively of 6, 8, and 10
cache-sensitive programs. We observed that optimal strict
cache-partitioning increases unfairness by 13.7% on average
w.r.t. optimal cache-clustering, and the fairness degradation
is higher than 19% for 25% of the workloads. Therefore,
allowing cache-sensitive applications to share a partition
clearly brings substantial fairness improvements.

Unfortunately, efficiently determining how to best group
programs into clusters is a big challenge since the number
of possible clustering options grows exponentially with the
workload size [11]. By conducting extra simulations we
found that a promising approach is to limit the cluster
size to 2. Henceforth, we use the term Best-2C to refer to
the best fairness-wise cache-clustering for a workload that
can be obtained with clusters of up to 2 applications. With
Best-2C the search-space size is substantially reduced w.r.t
optimal cache-clustering, and better unfairness figures can
be obtained compared to strict cache-partitioning. Specif-
ically, for 75% of the 48 workloads the relative fairness
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Fig. 3: Distribution of LLC-space made by (a) UCP-Slowdown and (b)
Best fairness-wise clustering with clusters of up to 2 applications

degradation of Best-2C w.r.t. optimal cache-clustering is now
below 3.8%. This indicates that using a heuristic algorithm
that approximates Best-2C would bring substantial benefits.

To guide the design of such an algorithm, we thoroughly
analyzed the differences between the solutions provided
by UCP-slowdown (used by LFOC) and Best-2C for the
48 workloads. We found that in most cases it is possible
to arrive at the second solution from the first one by per-
forming 3 kinds of basic transformations: T1 transferring
one way from a cluster to another, T2 merging two 1-way
clusters into a 1-way cluster and transferring the ”stolen”
way to another cluster, and T3 merging two clusters. To
illustrate the effectiveness of these transformations let us
analyze the example depicted in Fig. 3, which displays the
solutions of UCP-slowdown and Best-2C for a 6-application
workload. In the figure, a different color is used to represent
each cluster, indicating which cache ways are assigned to it,
and which applications make up the cluster (represented by
the color shown right below the application name and ob-
served slowdown). In this case, our heuristic algorithm first
transfers one way from astar06’s cluster to omnetpp17’s
cluster; applying T1 here enables to reduce the slowdown
of omnetpp17 (application with the highest slowdown)
to 1.25, and in turn the unfairness. To improve fairness
even further T2 is applied; blender17 and cactuBSSN17 are
merged into a single 1-way cluster, and the remaining way is
transferred to omnetpp17. This leads to Best-2C’s solution.

Algorithm 2 depicts our pair-clustering heuristic
method, which aproximates Best-2C. This new algorithm
is used by LFOC+ to distribute LLC space among
cache-sensitive applications. Its first step is to invoke
initial_partitioning() –defined in Alg. 3–, which
provides an initial cache-space distribution that employs
strict cache-partitioning. This function retrieves the way
assignment of UCP-slowdown, and iteratively tries to im-
prove fairness by applying T1 transformations to the ini-
tial way assignment. In each iteration of the loop in lines
4-17 of Alg. 3, it finds the partition of the application
with the highest slowdown –i– and determines the best
possible T1 transformation that grants an extra way to
application i: the transformation that provides the highest
reduction of its slowdown without increasing too much the
slowdown of the application that yields a way.

Before performing additional transformations to the ini-
tial solution, Step 2 of Alg. 2 calculates the cost of merging
any pair of 1-way clusters in the initial solution into a
1-way cluster, so as to guide T2 transformations. Step 3
(lines 17-31) traverses applications in the initial solution

Algorithm 2 Pair-clustering algorithm

1: Input: CS represents the set of cache-sensitive applications,
respectively; S represents a matrix that stores the slowdown
of each application i for different way counts; total ways is
the number of cache ways to distribute among applications.

2: function pair clustering(CS, total ways, S)
3: solutions← [ ]; cost1w ← [ ]; cinfo← { };

. Step 1: Determine initial solution (strict partitioning)
4: W ← initial partitioning(CS, total ways, S);
5: C ← [ [appi] for appi in CS ];
6: <unf, stp>← eval solution(C,W, cinfo);
7: solutions.append(C,W, unf, stp);

. Step 2: Calculate cost of merging any pair of 1-way clusters
8: for i← 1 to |CS| do
9: for j ← i+ 1 to |CS| do

10: if W [i] == 1 and W [j] == 1 then
11: <Si, Sj>← get scurves(i, j, CS, S, cinfo);
12: cost = (Si[1] + Sj [1])− (S[i][1] + S[j][1]);
13: cost1w.append(cost, i, j);

. Step 3: Try to apply T2 and T3 to unmerged clusters
14: merged← [false, false, · · · , false]
15: CSsorted ← sort applications in CS in descending order
16: by the slowdown for the W assignment
17: for app in CSsorted do
18: i← app.index;
19: if merged[i] then continue;

. Determine the best possible T2 and T3 trans. for app i
20: <cost, a1, a2>← bmerge(i, merged, cinfo, cost1w, W, CS, S);

. If no good transformation found. Skip
21: if cost[i] > 0 then continue;
22: prev sol← C;
23: if a1 6= i and a2 6= i then

. Apply T2 : Merge 1-way clusters and move 1 way to app i
24: W [i]←W [i] + 1;
25: Remove entry for (a1, a2) in cost1w;
26: else

. Apply T3 : Put a1 and a2 apps in single cluster
27: W [a1]←W [a1] +W [a2];
28: merged[a1]← true; merged[a2]← true; W [a2]← 0;

. Evaluate and store current solution
29: C ← build new solution(prev sol, a1, a2, W );
30: <unf, stp>← eval solution(C, W, cinfo);
31: solutions.append(C,W, unf, stp);
32: return sol with smallest (unf,−stp) pair in solutions

in descending order by slowdown, and successively ap-
plies T2 or T3 transformations to reduce the slowdown
of the current application. If the partition has not already
been merged, the bmerge() auxiliary function (defined in
Alg. 3) is invoked. This function calculates the cost of the
T2 and T3 transformations that are more beneficial to

the current application, and selects the best transformation
(i.e., the one that provides the highest slowdown reduction
without making the aggregate slowdown grow). Back in
Alg. 2 (line 21), if a good transformation was found, the
best type of transformation ( T2 or T3 ) is performed giving
rise to a new solution, which is evaluated and stored in the
solutions list. The algorithm returns the cache-clustering
solution with the smallest unfairness value in the list; if two
or more solutions with the same unfairness exist, the one
with the highest throughput (STP) value is selected.

Finally, we describe the purpose of the
build_new_solution() and get_scurves() auxiliary
functions used in Alg. 2. The first function returns a new
solution that can be obtained by merging –in the existing
prev sol solution– the two single-application clusters whose
IDs are passed as a parameter (a1 and a2), and subject to
the distribution of cache ways in W . The get_scurves()
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Algorithm 3 Auxiliary functions used for pair clustering

1: function initial partitioning(CS, total ways, S)
. The initial solution is provided by ucp slowdown()

2: W ← ucp slowdown(CS, total ways);
3: extra way ← [false, false, · · · , false];
4: for it← 1 to |CS| do
5: i ← Determine index of application with maximum

slowdown for the W assignment;
6: if extra way[i] then return W ;

. Calculate cost of transferring 1 way to app i (potential T1 )
7: for j ← 1 to |CS| do
8: <wi, wj>← <W [i],W [j]> ;
9: if extra way[j] or j == i or wj == 1

10: or S[j][wj − 1] > S[i][wi + 1] then
11: cost[j]←∞;
12: else
13: cost[j] ← (S[i][wi + 1]− S[i][wi]) −

(S[j][wj ]− S[j][wj − 1]);
. Perform the best T1 transformation possible (if any found)

14: < mcost, k > ← get min(cost);
15: if mcost <∞ then

. Transfer 1 way: app k ⇒ app i
16: <W [i],W [k]>← <W [i] + 1,W [j]− 1>;
17: extra way[i]← true;
18: return W

19: function bmerge(i,merged, cinfo, cost1w,W,CS, S)
20: <bcost, a1, a2>← <∞,−1,−1>;
21: for j ← 1 to |CS| do
22: if merged[i] then continue;
23: <wi, wj>← <W [i],W [j]>;
24: if i == j then

. Determine best T2 and its cost
25: if !cost1w.is empty() then
26: (cost steal, k, l)← mincost(cost1w);
27: cost← S[i][wi + 1]− (cost steal)/2;
28: <ai, aj> ← < k, l >;
29: else

. Determine the cost of merging apps i and j T3

30: <Si, Sj> ← get scurves(i, j, CS, S, cinfo);
31: wc ←W [i] +W [j];
32: cost← (Si[wc]− Sj [wc])− (S[i][wi] + S[j][wj ]);
33: <ai, aj> ← <i, j> if i ≤ j else <j, i>;
34: if cost ≤ 0 and cost ≤ bcost then
35: <bcost, a1, a2> ← <cost, ai, aj>
36: return < bcost, a1, a2 >

function returns two slowdown curves, which hold an
estimation of the slowdown that applications i and j
experience when assigned to the same partition, and for
different partition sizes. To obtain these slowdown curves
we used the same Whirlpool-based method employed by
PBBCache [11]. Notably, to avoid redundant calculations,
once the curves for two specific applications have been
calculated, they are stored in the cinfo data structure. So,
in later function invocations for the same two applications,
the curves are directly retrieved from cinfo.

4 THE LFOC+ DYNAMIC PARTITIONING STRATEGY

In Sec. 4.1 we describe the main differences between the
design and implementation of the LFOC and LFOC+ dy-
namic partitioning strategies. Next, in Sec. 4.2 we showcase
how LFOC+ deals with multithreaded applications as well
as with the contention that may arise due to confining
streaming programs in small cache partitions.

4.1 Design and Implementation
We have implemented LFOC and LFOC+ using a loadable
kernel module in Linux v5.4.55. Specifically, the implemen-
tation has been bundled as a monitoring plugin (extension of

the OS scheduler) in the PMCTrack tool [35], which features
a kernel-level API to access privileged hardware facilities
such as PMCs and cache-partitioning extensions.

LFOC and LFOC+ continuously monitor the value of
several PMC metrics for the various applications to classify
them at runtime into the light sharing, streaming and sensitive
classes. Both schemes have two operating modes: sampling
and fairness. The sampling mode is activated every so often to
determine an application’s class. During the fairness mode,
they execute their corresponding partitioning algorithm
periodically. In LFOC, Algorithm 1 is used for LLC-space
distribution; in LFOC+ a variant of that algorithm is used,
where the only difference lies in the LLC-space distribution
method for cache-sensitive programs (line 18 of Alg. 1).
Specifically, LFOC uses UCP-Slowdown for this task, whereas
LFOC+ leverages the pair-clustering strategy (Alg. 2).

When a new application (process) enters the system its
cache behavior is unknown, so an unknown class is initially
assigned to it. Right after its creation, each thread has to
go through a warm-up period (3 sampling intervals in our
setting). PMC data gathered during the warm-up period is
not used to classify applications, so as to mitigate mispre-
dictions associated with cold-start effects (e.g., spikes in the
LLC miss rate may be present at the start of the execution). A
sampling list is maintained to keep track of the applications
whose warm-up period has elapsed, and those for which
a transition between cache-sensitivity classes was detected.
This list is checked periodically during the fairness mode.
When it is not empty, the application found at the list head
is removed, and a transition is triggered into the sampling
mode, so as to determine the application’s current class.

The sampling mode –depicted in Fig. 4 for the 11-
way LLC of our experimental platform– is inspired by
the technique proposed by El-Sayed et al. [10]. Two non-
overlapping cache partitions covering the entire LLC are
created; the first one, referred to as the sampling partition,
is reserved for the application that triggered the transi-
tion into sampling mode, and the other one is devoted
to the remaining applications. As we gradually increase
the sampling-partition size, and the remaining applications
begin to receive a smaller amount of LLC space, the value
of various PMC events (i.e., instructions retired, processor
cycles, LLC misses and LLC occupancy) is gathered so as to
later determine the application class. Two main differences
exist between the earlier technique [10] –for the KPart
strategy– and ours. First, in the former approach the size
of the sampling application is progressively smaller (rather
than bigger). Second, unlike the former method, ours does
not require a full sweep of all LLC ways, but can be inter-
rupted after exploring a few way counts, which contributes
to substantially reduce the overhead that may come from the
sampling mode. Notably, this complete sweep is necessary
for KPart [10], as its partitioning algorithm receives as input
the MPKI and IPC values of each application for all possible
cache ways. In LFOC and LFOC+, the sampling process is
interrupted as soon as making the sampling partition bigger
provides no useful information to the clustering algorithm.
The heuristic to cancel the sampling process relies on mon-
itoring the LLCMPKC metric; intuitively, as soon as a very
low number of LLC misses is detected when increasing the
size of the sampling partition, we expect that performance
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Type Criterion
Streaming (Slowdown ≤ 1.03

and LLCMPKC ≥ 10)
in at least 1 way assignment,
and Slowdown < 1.06
in all way assignments

Sensitive If not streaming
and Slowdown ≥ 1.05
for a number of ways ≥ 2

Light shar. otherwise
TABLE 1: Classification of applications

(IPC) remains very close after assigning more ways, so
exploring bigger cache sizes is not necessary. In doing so,
light-sharing applications can be rapidly identified: they
incur very few LLC misses after exploring only 1 or 2 ways.
In a similar vein, many cache-sensitive programs begin to
exhibit a light-sharing like behavior (i.e., low number of
misses) as soon as its cache-space requirements are fulfilled.

At the end of the sampling period, the application’s
slowdown curve is built by using the IPC values gathered
for different cache sizes, and employing the highest IPC
observed as a reference for the calculation (estimate of the
performance with all LLC ways). After that, the application
class is determined by using a set of rules. Table 1 summa-
rizes the classification rules employed on our experimental
platform, which are defined in terms of the application
slowdown, and the LLCMPKC. We obtained these classifica-
tion rules after analyzing the value of various PMC metrics
gathered offline for 15 distinct applications with different
cache sizes (we collected only 50 billion instructions for each
application and way count). In designing our classification
method, a main goal was to make it simple enough –as [13],
[32]– so that it could be evaluated efficiently at the OS level.

Once the application class has been determined, the
obtained slowdown curve is stored in the task structure for
cache-sensitive programs only (for LFOC+ the LLCMPKC
curve is stored as well), as this information is necessary for
the partitioning algorithms. If the sampling list is empty, a
transition is automatically triggered into the fairness mode.
When entering this mode, the associated partitioning algo-
rithm is executed immediately, to quickly undo the subopti-
mal LLC distribution enforced during the sampling mode.

Because an application may exhibit different program
phases, its initial classification may not be representative
throughout the execution. To reduce potential overheads in-
troduced by periodic sampling-mode activations, this mode
is only triggered when the application class has likely
changed. To detect class transitions our implementation
leverages lightweight PMC-based mechanisms that strive
to react to coarse-grained program phases only, thus mini-
mizing the number of sampling-mode activations. For light-
sharing programs, a class change is signaled if it enters
a memory-intensive phase, namely, if a running average
of the LLCMPKC exceeds a high_threshold (10 in our
platform, as reported in Table 1 for streaming-like behavior).
Conversely, for streaming programs, usually assigned to
small LLC partitions, the sampling mode is engaged if its
average LLCMPKC falls below a low_threshold (defined
as 30% of high_threshold). Finally, for sensitive appli-
cations, a heuristic is employed to detect abrupt changes
in its slowdown curve without actually rebuilding it. In
particular, a critical size is associated with each sensitive
application. This size –determined during its last sampling

period– indicates the point of the curve (number of ways)
where the slowdown falls below 1.05 (as in Table 1). A class
change is signaled when a non-memory intensive stable
phase is detected (inverse criterion used for light-sharing
applications) for a LLC occupancy smaller than the critical
size, or when the average LLCMPKC>high_threshold
for a LLC occupancy bigger than the critical size.

We should highlight that LFOC and LFOC+ are resource
managers primarily conceived to work in scenarios with-
out oversubscription, just like most recent cache-clustering
proposals [3], [10], [13]. Nevertheless, to effectively deal
with scenarios when the total number of threads exceeds
the platform’s core count, our implementation could be
adapted so as to work in closer cooperation with the OS
scheduler. Specifically, our resource-management proposals
are more amenable for integration with contention-aware
co-schedulers that also rely on application classification [5],
[36]. So, combining fairness-aware cache-clustering with co-
scheduling of the most suitable subset of threads would
enable to reduce contention even further.

4.2 Dealing with Multithreaded Applications and Re-
ducing Contention of Streaming Programs
LFOC+ seeks to deliver fairness by grouping applications
into clusters and mapping these clusters to LLC parti-
tions of potentially different size. Unlike all previously
proposed cache-clustering policies [3], [10], [13] –including
LFOC [15]–, LFOC+ is equipped with support for dealing
with regular data-parallel multithreaded applications. In
these programs, all threads do mostly the same kind of
processing with different data, so the values of the various
PMC metrics are very similar across threads. To reduce the
amount of sampling required for online characterization,
LFOC+ selects just one thread –referred to as the reference
thread– in each program. During the sampling mode, the
PMC metrics gathered for this thread alone are used to de-
termine the application class by following the same method
described in Sec. 4.1. At all times, all threads in an appli-
cation are assigned to the same LLC partition by LFOC+.
When the application-to-partition mapping is changed by
the partitioning algorithm, all threads are immediately mi-
grated to the assigned partition. To this end, our OS-level
implementation relies on inter-processor interrupts (IPIs);
when the partitioning algorithm completes on a certain core
(it changes over time), LFOC+ issues an IPI-based cross-call
for each runnable thread in the application to update the
partition ID in a register of the corresponding CPU [8].

Because threads in a multithreaded application may
block due to synchronization or other events (e.g., page
faults), the application’s reference thread can vary over time.
LFOC+’s implementation tracks thread activations and de-
activations during context switches, and ensures that the
selected reference thread is always the runnable thread with
the smallest value of the pid field in Linux task structure.
In OpenMP programs, for example, this strategy selects
the master as the reference thread most of the time, as it
typically spends a larger portion of its execution in the
runnable state w.r.t. other threads. In Sec. 5.3 we assess
the effectiveness of this support by using workloads that
include data-parallel multithreaded programs. We leave for
future work the inclusion of support for other types of
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multithreaded applications, like those that exploit pipeline
parallelism. For these applications, threads can be grouped
in separate sets according to their processing type (e.g.,
based on the main function they execute), and a reference
thread can be selected within each group so as to efficiently
determine the application-wide class.

LFOC+ also takes special care with the contention that
may arise due to confining streaming programs in 2.5MB
partitions (1-way on our platform). While these programs
do not suffer noticeably when running alone on the system
with 1 LLC way, we observed that co-running many stream-
ing programs competing for the same way may be harmful
due to the huge number of memory requests that result
from that competition. This issue may substantially limit the
effective memory bandwidth of each streaming program,
and, in turn, degrade their performance. In the workloads
we used, this does not have a significant impact in fairness
but usually translates into throughput degradation, espe-
cially when the number of memory-intensive applications
in the workload is high. To effectively mitigate this problem,
LFOC+ merges multiple 2.5MB 1-way streaming partitions
into a single 5MB (2-way) partition. Likewise, we observed
that assigning a streaming-like multithreaded application
to a 1-way partition dramatically increases the competition
between its various threads, and it may lead to substan-
tial throughput degradation. Therefore, as a conservative
measure, LFOC+ also ensures that streaming multithreaded
applications are confined (when necessary) in 5MB 2-way
partitions. As we demonstrate in Sec. 5.3, this provides a
better tradeoff between fairness and throughput.

5 EXPERIMENTS

For our evaluation we used a 20-core server platform fea-
turing a Xeon Gold 6138 “Skylake” processor where cores
run at 2Ghz. This processor integrates an 11-way 27.5MB
LLC (L3) with way-partitioning support; each core features
a 64KB L1 and a 1MB L2 cache. On this platform we carried
out an experimental comparison of LFOC+ with Stock-
Linux (i.e., the vanilla Linux kernel without modifications,
which does not partition the LLC), and with the Dunn [3],
KPart [10], LFOC [15] and CPA [13] partitioning policies.

In Sec. 5.1 we evaluate the effectiveness of LFOC+ when
running workloads consisting of single-threaded bench-
marks from SPEC CPU using the reference input set. This
kind of workloads was employed in the evaluation of all
previous approaches [3], [10], [13], [15]. In Sec. 5.2 we
perform an overhead analysis of LFOC+’s sampling mode.
In Sec. 5.3 we discuss the results provided by LFOC+ when
using workloads that include multithreaded applications.

In conducting multi-application experiments we follow
a similar methodology to that of previous work [2], [34],
[37], [38], which avoids runs of which significant portions
are spent executing only the slowest program(s) in the
workload. Specifically, we ensure that all applications in
the mix are started simultaneously, and when one of them
completes, the program is restarted repeatedly until the
longest application in the set completes three times. We then
measure unfairness and STP, by using the geometric mean
of the completion times for each program. To ensure a fair
comparison with previous proposals when using workloads
made up of sequential programs (Sec. 5.1) we complete

only a fixed number of instructions for each application
(i.e., 150B in our setting), as most previous proposals [3],
[10], [15] were evaluated by considering only portions of
an application’s execution. Conversely, for workloads that
include multithreaded programs (Sec. 5.3), we perform a full
execution of all the applications in each mix, as running a
fixed instruction count in a multithreaded program does not
always capture the same execution portion across runs [39].

5.1 Comparison with Previous Approaches

Fig. 5 depicts the composition of the 64 randomly gen-
erated workloads used for our experiments in this sec-
tion. These program mixes include varying amounts of
streaming, cache-sensitive and light-sharing benchmarks.
Note that we selected 40 applications from both the SPEC
CPU2006 and CPU2017 suites to experiment with a wider
range of streaming and cache-sensitive programs, as most
benchmarks in both suites exhibit a light-sharing cache-
insensitive execution profile on our platform. This is caused
in part due to the coarse granularity of the LLC partitions
we can create on this system (the smallest partition is as
big as 2.5MB) and the somewhat large private L2 caches
(1MB). We used workloads of 8, 12, 16 and 20 applications
each, so as to analyze the impact that the workload size has
on fairness. Notably, these workloads are more diverse than
those explored in our previous work [15], which included no
more than four cache-sensitive applications each. The vast
majority of SPEC benchmarks not present in the workloads
of Fig. 5 exhibit a light-sharing behavior, which is already
represented well by 50% of the selected programs. For the
sake of completeness, workloads in Sec. 5.3 do include most
of the benchmarks not considered here.

In the remainder of this section we first evaluate the
effectiveness of the cache-clustering algorithms used by
the various partitioning strategies, when fed with offline-
collected PMC data. Then we evaluate how fairness-aware
dynamic clustering schemes, which rely on online-collected
data, perform when applications exhibit different phases.

A) Evaluation of Clustering Algorithms. The main goal in
this section is to assess the degree of fairness and through-
put delivered by a certain clustering strategy (i.e., how
applications are grouped into shared or separate partitions
according to their runtime properties) putting aside the
associated overheads due to algorithm execution, perfor-
mance monitoring and cache allocation.

To assess the effectiveness of each clustering algorithm,
we consider the first 27 workloads (Si mixes shown in Fig. 5)
consisting of 8, 12 or 16 applications whose behavior falls in
a clear class (i.e., cache sensitive, streaming or light sharing)
for the vast majority of the execution. For the analysis, we
implemented all the clustering algorithms used by KPart,
CPA, Dunn, LFOC and LFOC+ on top of the PBBCache
simulator. To conduct the corresponding experiments, we
launched the simulator prior to the execution of each work-
load to retrieve the cache partitions and application-to-
partition mappings imposed by a certain clustering strategy.
Then, we enforced the corresponding cache partitions on
a per-process manner from user-space, and launched the
workload in question, which used the same static cache con-
figuration throughout the execution. Note that, while in our
simulation analysis of Sec. 3 we employed the Unfairness
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Fig. 5: Multiprogram workloads used for our experiments. The “x2” mark indicates that 2 instances of a benchmark are present in a workload

values provided by PBBcache [11], here we calculate the
values of this metric with the actual completion times of
the programs executed on the real system.

Fig. 6 shows the degree of unfairness and throughput
delivered by the different clustering strategies; the values
have been normalized to the results of Stock-Linux. With
this first set of experiments, we also provide a comparison
with the optimal fairness cache-clustering solution deter-
mined by the PBBCache simulator (see Sec. 3.2), denoted as
Best-Static in the figure. This comparison with the optimal
is an important contribution of our research. As with the
other approaches, we used static cache partitioning based
on the information provided by PBBCache for the optimal
solution. We should highlight that to make this comparison
with the optimal feasible we had to use mixes of up to
16 applications, as the exponential growth of the search
space in this optimization problem made it impossible to
obtain the solution for higher application counts. By lever-
aging a parallel algorithm [11] on our 20-core experimental
platform, PBBCache determines the optimal solution for 16-
application mixes in roughly 9.5 hours, where 10.48 billion
clustering solutions are explored. The 82.8 billion possible
clusterings for a 17-application workload, or the 51.7 trillion
options to explore for a 20-application workload makes it
impractical to determine the optimal in these scenarios.

KPart’s clustering algorithm, designed to optimize
throughput, surprisingly brings modest throughput gains
(up to 3.67%). Furthermore, we observe that it sometimes

brings substantial fairness degradation over LFOC and
LFOC+ (e.g., for the S3, S13 or S26 workloads). We found
that KPart fails to systematically map aggressor streaming
applications and cache-sensitive programs to separate par-
titions, which is crucial to reduce unfairness. This behav-
ior is caused by the distance function that KPart uses to
decide whether to map several applications to the same
partition. Specifically, for S26, KPart opts to assign the
libquantum06 (streaming) and omnetpp17 (highly cache-
sensitive) programs to the same partition. Fig. 8a shows the
partitioned and combined LLCMPKI curves that KPart uses
to determine the distance between the two aforementioned
applications. These curves depict the aggregate LLCMPKI
obtained when assigning the two applications to separate
and to the same partition, respectively, for different partition
sizes; the closer the curves, the smaller the distance, and
hence the more likely for KPart to combine both applications
in the same partition (which is the case in S26). How-
ever, if we analyze how the maximum slowdown varies
when mapping both applications to the same partition (see
Fig. 8b), we can conclude that assigning them to separate
partitions is clearly more beneficial in terms of fairness for
most partition sizes. So, our overarching conclusion is that
the KPart’s distance function alone is not appropriate to
guide fairness-aware cache-clustering decisions, as it relies
on the LLCMPKI metric, which is known to be a misleading
indicator in the context of shared-resource contention [40].

As KPart, CPA also strives to improve throughput. How-
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Fig. 6: Normalized unfairness and STP values obtained by the static version of the various clustering algorithms
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TABLE 2: Average and max.
unfairness reduction of the
various strategies relative to
Stock-Linux for experiments
of Fig. 6

Strategy Avg. Max.

KPart 6.65% 22.12%
CPA 2.49% 14.19%

Dunn 6.06% 13.65%
LFOC 10.62% 24.39%

LFOC+ 14.21% 25.15%
Best-static 17.27% 25.22%
(optimal)
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Fig. 8: Combined and partitioned curves (libquantum06-omnetpp17)

ever, CPA provides very modest throughput improvements
relative to Stock-Linux (by up to 2% for S4) in our experi-
mental platform, whose cache hierarchy differs from that of
the system where CPA was originally evaluated [13]. The
observed fairness gains are smaller than 5% for over 85%
of the workloads. These small improvements stem from
the fact that most of the workloads we explored include
more than 3 highly/mildly cache-sensitive programs, re-
ferred to as critical applications in CPA’s classification [13].
In these cases, CPA assigns all critical applications to one
partition that spans the entire LLC, thus reducing fairness
and throughput optimization opportunities. One aspect that
contributes to reducing unfairness slightly in most work-
loads is the fact that CPA confines up to 2 aggressor applica-
tions in separate LLC partitions (of 2.5MB in our platform).
Programs detected as aggressors in CPA are those that either
fall in a special squanderer category or non-critical applica-
tions that are later detected to have a high LLC occupancy.
Unfortunately, when the number of aggressors in the work-
load exceeds 2, CPA assigns the remaining aggressors to the
same partition devoted to non-critical programs. Because
this partition may overlap with those reserved to mildly and
highly cache-sensitive programs, fairness can be severely
degraded, as our experiments reveal. By contrast, LFOC+
effectively isolates streaming aggressor programs (such as
milc06 or lbm06) in small partitions that never overlap

with those devoted to cache-sensitive programs, enabling to
improve fairness by 12% on average over CPA.

The results of the Dunn policy –designed to optimize
fairness– exhibit a non-uniform behavior across workloads;
in some cases (e.g., S1) Dunn reduces unfairness by up
to 13.6%, but in many others it obtains modest fairness
improvements over Stock-Linux. This is due to the fact
that Dunn frequently assigns streaming and cache-sensitive
applications to the same partition, or to different but over-
lapping partitions. This stems from its exclusive reliance on
the number of processor stall cycles due to L2 cache misses;
the higher the value of this event, the higher the number
of LLC ways allotted by Dunn to the application [3]. Fig. 7
shows that there is no clear correlation between an appli-
cation’s L2-miss stall cycles and the slowdown it suffers
when running with reduced LLC space. For example, in the
S10 workload, where Dunn slightly degrades fairness, the
soplex (sensitive) and GemsFDTD (streaming) programs
are assigned by Dunn to the same partition –due to the
similar value of the aforementioned metric– along with
other sensitive programs. Mixing this kind of aggressor ap-
plications with highly cache-sensitive programs in the same
partition leads to performance degradation and unfairness.
So, we conclude that using the L2-miss stall cycles metric
alone is not enough to fairly distribute space in the LLC.

Overall our results reveal that LFOC and LFOC+ ex-
hibit a fairer behavior than the other schemes for the vast
majority of the workloads. Table 2 showcases the average
and maximum reduction in unfairness achieved by the
various approaches relative to Stock-Linux. In particular,
LFOC+ achieves up to 25.15% fairness improvement, and
performs in a close range (3.3% on average) of the Best Static
approach. While LFOC+ only achieves a 3.92% average
fairness improvement w.r.t. LFOC, the differences between
both approaches become especially pronounced for work-
loads featuring 4 or more cache-sensitive programs. For this
kind of workloads (e.g., S5-S9 or S23-S27), LFOC+ reduces
unfairness by up to 9.8% over LFOC. That is due to the
fact that LFOC assigns cache-sensitive programs to separate
and small (≤ 2-way) partitions, while LFOC+ effectively
combines some of these applications in the same partitions.
In addition, confining all streaming programs in a single
partition enables LFOC+ to bring additional improvements.
Regarding throughput, there is no clear winner: all the
algorithms perform in a tight 3% range, and their average
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Fig. 9: Normalized unfairness and STP values delivered by the dynamic cache-clustering policies for Pi workloads

throughput improvement is very small (between 0.16% –
KPart– and 0.61% –LFOC+–). Notably, as the number of
memory-intensive applications in the workload increases,
LFOC and LFOC+ begin to slightly degrade throughput
over Linux. We elaborate on this aspect in the next section.

B) Study of the Dynamic Policies. We now focus on the
analysis of the dynamic version of the LFOC, LFOC+,
Dunn and KPart policies, which rely on on-line performance
monitoring. We leave for future work the evaluation of
the dynamic version of CPA and the adaptation of its
implementation to our experimental platform, which, as
pointed out by CPA’s authors [13], requires to run thousands
of experiments to determine the threshold values used for
online application classification. Nevertheless, as shown in
Sec. 5.1.A, CPA’s cache-clustering algorithm provides small
fairness improvements especially for workloads including
more than 3 critical applications or at least 3 aggressor
programs; this is the case of most of the workloads we used.

For our analysis, we created a user-level implementation
of Dunn, as this policy was originally proposed as a user-
level strategy [3]. We also tested with the publicly available
user-level C++ implementation of KPart-Dynaway [41] –the
dynamic version of KPart. Unfortunately, on our platform
KPart-Dynaway’s execution crashes shortly after the parti-
tioning algorithm is executed for the first time; this is due
to a number of assumptions of this implementation that
do not apply to our experimental setting [15]. While this
issue prevented us from evaluating KPart-Dynaway’s on
our platform, we were still able to measure the completion
time of the partitioning algorithm for workloads with less
than 12 applications. For 11-application workloads KPart’s
algorithm takes 4.14ms on average. By contrast, LFOC’s
and LFOC+’s algorithms take 0.94us and 6.06us on average
for 12-application workloads, respectively, and 0.96us and
6.16us for 16-application workloads. As we showed in Sec.
5.1.A, KPart fails to provide better fairness than LFOC’s
or LFOC+’s cache-clustering algorithms, whose completion
times are several orders of magnitude shorter.

In our OS-level implementations of LFOC and LFOC+,
PMCs are sampled every 100M instructions during the fair-
ness mode and every 10M instructions during the sampling
mode. The partitioning algorithm for Dunn, LFOC and
LFOC+ is executed every 500ms, as in previous work [3],
[15]. To verify that the various dynamic approaches were
working as expected, we first experimented with workloads

TABLE 3: Average and
max. unfairness reduc-
tion of the various strate-
gies relative to Stock-
Linux for experiments of
Fig. 9

Strategy Avg. Max.

Dunn 6.85% 19.79%
LFOC 10.88% 33.52%
LFOC+ 15.27% 36.77%

TABLE 4: Sampling mode statistics

Work. Fraction Activations Avg.
total time per second Time

P28 0.438% 0.556 6.295ms
P29 0.266% 0.585 4.552ms
P30 0.330% 0.601 5.482ms
P31 0.370% 0.570 6.490ms
P32 0.223% 0.580 3.850ms
P33 0.423% 0.607 6.973ms
P34 0.363% 0.543 6.690ms
P35 0.381% 0.596 6.380ms
P36 0.421% 0.559 5.435ms
P37 0.428% 0.601 7.118ms

S1-S27. The corresponding results –omitted due to space
constraints– exhibit very similar trends to those of Sec. 5.1.A,
where static cache-partitioning was used.

Fig. 9 shows the normalized unfairness and throughput
values delivered by the dynamic versions of Dunn, LFOC
and LFOC+ for Pi workloads. These workloads consist
of 8, 12, 16 or 20 applications each, and include bench-
marks that exhibit distinct long-term program phases with
varying degree of memory intensity, such as xz, astar,
mcf, xalancbmk or blender. Some of these applications
go through highly cache-sensitive phases, so Stock-Linux
delivers higher unfairness values in these scenarios. This
is why all strategies achieve higher unfairness reductions
w.r.t. to Linux, than for Si workloads, as summarized in Ta-
ble 3. Yet, LFOC+ is capable to improve fairness over Dunn
across the board (by up to 22.18% for P28, and by 9.13%
on average). Moreover, LFOC+ still outperforms LFOC in
term of fairness (4.94% on average) while providing better
system throughput for most workloads. Still, the average
throughput improvement achieved by any of the algorithms
relative to Stock-Linux is almost negligible (less than 0.66%).

To conclude the discussion of these experiments, sev-
eral key observations are in order. First, as the number of
cache-sensitive applications in the workload gets closer to
the number of LLC ways (11), there is smaller room for
improvement; we could corroborate this trend via extensive
analysis with the PBBCache simulator. Second, LFOC and
LFOC+ tend to even out the applications’ performance
degradation by substantially reducing the relative slow-
down of cache-sensitive programs, at the expense of poten-
tially increasing the slowdown of aggressor streaming pro-
grams. Sometimes this approach also results into through-
put gains relative to Stock-Linux. Third, these throughput
gains are usually smaller as we increase the number of
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applications in the workload. Intuitively, this has to do with
the cumulative nature of the STP metric (see Eq. 3) and the
fact that cache-clustering algorithms have little effect in the
slowdown of certain programs (e.g., light-sharing ones); for
these programs a fixed contribution to the summation of
Eq. 3 is applied to all strategies. Related to this observation,
and by zooming in on the bottom chart of Fig. 9 we can see
that the modest relative STP improvements of the evaluated
strategies fade as we go towards the rightmost part of
the chart. Moreover, fairness-aware approaches begin to
introduce slight throughput degradation w.r.t. Stock-Linux
for some 20-application workloads (P28-P37). This occurs
due to two interrelated factors: (1) memory bandwidth
contention, which begins to be substantial as we increase the
number of co-running memory-intensive programs, and (2)
the fact that fairness-aware approaches tend to grant fewer
LLC ways to streaming programs, whose performance is
very sensitive to bandwidth contention. Also of special
attention is the striking difference in the throughput figures
of LFOC and LFOC+ for P28-P31. In this context, LFOC
uses two 1-way partitions to confine streaming programs
most of the time. As discussed in Sec. 4.2, this degrades the
performance of streaming programs due to the competition
for a single LLC way, which causes up to a 9.6% throughput
degradation (for P28). LFOC+, by contrast, can deliver ac-
ceptable throughput in this scenario by employing a single
5MB (2-way) partition to confine all streaming programs. In
addition, the more advanced mechanism used by LFOC+ to
distribute LLC-space between sensitive applications allows
it to reduce unfairness by up to 20.6% w.r.t. LFOC (for P28).

5.2 Overhead Analysis
We now analyze the overhead of LFOC+’s sampling mode.
To gather the required data from our OS-level implementa-
tion we used the SystemTap [42] tool. For our analysis we
employed the P28-P37 workloads; for these 20-application
workloads the partitioning algorithm does not take long to
run (7.17us on average), but the sampling mode is engaged
more often than for other workloads, as they include many
programs with a time-varying degree of cache sensitivity.
Table 4 shows the fraction over the total completion time
that the sampling period is active under LFOC+, the fre-
quency of activations of this mode, and the time required
for applications in each workload to go through a sampling
cycle. The results indicate that the sampling mode was
active between 0.22% and 0.44% of the total execution time,
and applications take 5.92ms on average to complete a
sampling cycle. Recall that, unlike KPart, LFOC and LFOC+
do not always require a full cache-way sweep, and in most
cases the sampling period can be interrupted as soon as
the application class is identified. Notably, we observed that
75% of the sampling mode activations take less than 11.5ms.
All in all, our experiments in Sec. 5.1.B reveal that the small
percentage over the total execution time (0.36% on average)
devoted to sampling-mode processing enables LFOC+ to
deliver substantial fairness improvements.

As stated earlier, we use a shorter instruction window for
the sampling mode (10M instr.) than for the fairness mode
(100M instr.). This enables to reduce the time required to
complete sampling at the cost of extra overhead due to more
frequent OS activations to process PMCs. To determine an

upper bound of the overhead that comes exclusively from
using the shorter 10M window, we ran all SPEC CPU pro-
grams alone on the system with both instruction windows,
and found that using 10M windows degrades performance
by up to 0.73% (0.54% on average) for the full execution.

5.3 Workloads Including Multithreaded Applications
In this section we assess the effectiveness of LFOC+’s sup-
port for cache partitioning under workloads including mul-
tithreaded programs. Because none of the other partition-
ing schemes considered [3], [10], [13], [15] support multi-
threaded applications, here we only provide the comparison
between LFOC+ and Stock-Linux. Prior to our evaluation
we performed an extensive analysis on the cache-sensitivity
and contentiousness of the applications in four parallel
benchmark suites: PARSEC3, SPEC OMP2012, NAS Parallel
Bechmarks and Rodinia. We also experimented with the
OpenMP implementation available for some SPEC CPU2017
FP speed benchmarks. We found that many of the parallel
benchmarks explored have a bandwidth-intensive cache-
insensitive behavior, and their bandwidth consumption is
very superior to the one observed in single-threaded pro-
grams from SPEC CPU. For example, in running a multi-
threaded application alone we observed that its bandwidth
consumption can rise up to 66GB/s while for a single-
threaded program it is usually no greater than 13GB/s. As
a result, when using multithreaded programs, bandwidth
contention has a great impact in throughput and fairness.

To build diverse multi-application workloads consisting
of programs of different cache-sensitivity classes we picked
a subset of multithreaded benchmarks from each of the five
suites explored. Table 5 enumerates the parallel benchmarks
present in our multiapplication workloads, along with their
cache-sensitivity class (i.e., 1 light sharing, 2 sensitive,
and 3 streaming). The selected benchmarks from PARSEC
are POSIX threads programs, whereas all the others are
OpenMP applications. Table 6 shows the composition of
the randomly-generated workloads explored in this sec-
tion, which combine single-threaded and parallel bench-
marks from different categories. Specifically, three types of
workloads were considered: workloads M1-M8 are made
up of 2 multithreaded programs, M9-M20 combine 4 sin-
glethreaded and 1 multithreaded program, and M21-M32
consist of 4 single-threaded and 2 multithreaded programs.
In all workloads the total number of threads matches the
number of cores on our platform (20).

Fig. 10 shows the unfairness and throughput deliv-
ered by LFOC+ relative to Stock-Linux. As a reference,
we also display the results obtained when using 2.5MB
1-way partitions to confine multithreaded streaming pro-
grams instead of 5MB 2-way partitions (as LFOC+ does by
default). This approach that treats all streaming programs
similarly is referred to as LFOC+-1WMT. We observe that
LFOC+ provides substantial unfairness reductions when
multithreaded programs are present in the workload. These
gains (up to 34.5% for M29) are especially pronounced for
workloads that combine multithreaded and single-threaded
applications. Clearly, LFOC+’s control to reduce bandwidth
contention (i.e., using a 5MB partition to confine streaming
multithreaded programs) constitutes an effective measure
to reduce throughput degradation. Removing that control
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Fig. 10: Unfairness and throughput provided by LFOC+ for workloads in Table 6

TABLE 5: Multithreaded benchmarks considered

Suite Benchmarks

PARSEC 3 blackscholes 2 , bodytrack 2 ,
fluidanimate 1

SPEC CPU2017 cam4 s 2 , lbm s 3 , nab s 1 ,
pop2 s 3 , xz s 2

SPEC OMP2012 smithwa 3 , swim 3

Rodinia CFD-Euler3D 2 , myocyte 1 ,
streamcluster 3

NAS Parallel B. BT 2 , CG 2 , EP 1 , LU 2 , SP 3

TABLE 6: Workloads including multithreaded applications. The number of threads they run with are indicated in parentheses

Workload Composition

M1 bodytrack(10), BT(10)
M2 cam4 s(10),streamcluster(10)
M3 bodytrack(10), pop2 s(10)
M4 bodytrack(10), smithwa(10)
M5 lbm s(10), cam4 s(10)
M6 CFD-Euler3D(10), swim(10)
M7 lbm s(10), xz s(10)
M8 CFD-Euler3D(10), lbm s(10)
M9 nab17,gobmk06,povray06,xalancbmk06,LU(16)
M10 deepsjeng17, fotonik3d17, omnetpp17, perlbench17, EP(16)
M11 lbm06, xalancbmk06, namd17, povray17, fluidanimate(16)
M12 gamess06, gromacs06, lbm06, omnetpp06, myocyte(16)
M13 fotonik3d17, imagick17, povray17, xalancbmk17, blackscholes(16)
M14 GemsFDTD06, povray06, xalancbmk06, imagick17, BT(16)
M15 fotonik3d17, namd17, omnetpp17, x264ref17, cam4 s(16)
M16 GemsFDTD06, gamess06, omnetpp06, x264ref17, streamcluster(16)

Workload Composition

M17 gamess06, povray06, xalancbmk06, imagick17, BT(16)
M18 calculix06, omnetpp06, bwaves17, lbm17, fluidanimate(16)
M19 GemsFDTD06, dealii06, wrf06, omnetpp17, streamcluster(16)
M20 calculix06, lbm06, omnetpp06, bwaves17, fluidanimate(16)
M21 gromacs06, namd06, lbm17, omnetpp17, fluidanimate(8), pop2 s(8)
M22 perlbench06, exchange217, namd17, omnetpp17, EP(8), lbm s(8)
M23 h264ref06, omnetpp06, fotonik3d17, namd17, myocyte(8), xz s(8)
M24 gamess06, nab17, povray17, xalancbmk17, EP(8), swim(8)
M25 gobmk06, povray06, lbm17, omnetpp17, CG(8), myocyte(8)
M26 bzip206, tonto06, xalancbmk06, roms17, blackscholes(8), CG(8)
M27 h264ref06, lbm06, omnetpp17, perlbench17, EP(8), lbm s(8)
M28 omnetpp06, perlbench06, nab17, wrf17, SP(8), nab s(8)
M29 h264ref06, omnetpp06, zeusmp06, perlbench17, EP(8), lbm s(8)
M30 milc06, bwaves17, gcc17, xalancbmk17, EP(8), nab s(8)
M31 bwaves06, dealii06, omnetpp17, parest17, SP(8), myocyte(8)
M32 omnetpp06, perlbench06, wrf06, zeusmp06, myocyte(8), streamcluster(8)

measure (i.e., LFOC+-1WMT) may help reducing unfairness
further, such as in M6, M8 or M20. Nevertheless, this may
also backfire by causing noticeable throughput degradation
(up to 15% for M6). All in all, the bandwidth-contention
control measure allows LFOC+ to make a more conservative
cache-clustering approach when multithreaded applications
are included in the workload, as it still offers substantial
reductions in unfairness (16.5% on average), with almost no
throughput degradation across the board.

6 CONCLUSIONS AND FUTURE WORK

In this article we have presented LFOC+, a dynamic OS-
level cache-partitioning policy implemented in the Linux
kernel. LFOC+ is a novel fairness-aware strategy that con-
stitutes a substantial enhancement of our earlier LFOC
policy [15]. Our detailed simulation-based analysis of the
fairness-wise optimal cache-clustering solution enabled us
to guide the design of a more effective cache-clustering
algorithm, used by LFOC+. This new partitioning algorithm
makes it possible to reduce the slowdown of cache-sensitive
applications further by combining up to 2 of these appli-
cations in the same partition. Our experiments, conducted
on an Intel CMP platform with hardware cache-partitioning
support, reveal that LFOC+ improves fairness substantially
over state-of-the-art partitioning policies, such as Dunn [3]
(by up to 22.1%), KPart [10] (up to 17.4%), CPA [13] (up
to 25%) and LFOC [15] (up to 20.6%). The source code
of LFOC+’s partitioning algorithm and that of our kernel-
level partitioning framework has been released as part of
PMCTrack v2.0 at https://github.com/jcsaezal/pmctrack.

LFOC+ also includes specific support to effectively deal
with data-parallel multithreaded applications, which are not
handled by any other recent proposal [3], [10], [13], [15].
We should highlight that this support may not be effective
(1) when various threads of the same application exhibit
very different cache-related behaviors, and (2) when a mul-
tithreaded program runs alone on the system, as LFOC+

does not partition the LLC in this case. To better deal with
these scenarios, we strongly believe that cache-partitioning
among threads could be exploited along with our inter-
application partitioning approach. While some aspects of
LFOC+, such as the PMC-based classification, may be also
beneficial to guide intra-application partitioning (e.g., to
isolate streaming threads from cache-sensitive ones), novel
techniques still need to be devised to effectively support
other types of multithreaded programs, such as latency-
sensitive or throughput-oriented applications. For these pro-
grams, specific user-level metrics should be considered (e.g.,
jobs completed per unit time, latency, etc.) to measure the
slowdown or to properly assess the degree of quality of
service, along with potential cooperation from other soft-
ware layers, such as the runtime system. As for future work,
we also plan to design cache-clustering approaches for the
latest AMD high-performance processors, where multiple
logically independent LLCs –each one shared by a different
subset of cores– are present on the same chip [43]. Al-
though contention-aware thread-to-LLC mapping schemes
have been proposed [2], [4], [6], no previous proposal has
yet addressed fair cache-clustering coupled with effective
thread-to-LLC mapping. Optimizing fairness on these AMD
processors is a more complex problem than on single-LLC
CMPs, so this constitutes an interesting research avenue.
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